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The convenience, intuitiveness, and versatility of Dempster-Shafer (DS) theoretic

models of data uncertainty make DS evidence theory an ideal framework for reasoning

under uncertainty and decision making in Artificial Intelligence (AI) applications.

However, a major criticism cast towards DS theoretic (DST) evidential reasoning is

the heavy computational burden it entails. If the advantages offered by DS theory

are to be fully realized, it is essential that one explores efficient data structures and

algorithms that can be used for DST operations and computations.

We present a novel generalized computational framework for exactly this purpose.

We develop three representations — DS-Vector, DS-Matrix, and DS-Tree — which

allow DST computation to be performed in significantly less time. These three rep-

resentations can also be utilized as tools for visualizing DST models. A new strategy,

which we refer to as REGAP, which allows REcursive Generation of and Access to

Propositions, is introduced and harnessed in the development of this framework and

computational algorithms. A new computational library, which we refer to as BCL

(Belief Computation Library) is developed and utilized in the simulations. We provide

a discussion and experimental validation of the utility, efficiency, and implementation

of the proposed data structures and algorithms.



As in Bayesian probability theory, the conditional operation plays a pivotal role

in DS theoretic (DST) strategies for evidence updating and fusion. Again, a ma-

jor limitation in applying DST techniques for reasoning under uncertainty is the

absence of a feasible computational framework to overcome the prohibitive computa-

tional burden this conditional operation entails. This is a known problem with non-

deterministic polynomial-time hardness (NP-hard). We address this critical challenge

via two novel generalized conditional computational models — DS-Conditional-One

and DS-Conditional-All — which allow significantly less computational and space

complexity when computing conditional mass and belief. They provide deeper in-

sight into the DST conditional itself and so act as a valuable visualization tool during

conditional computation. We provide a thorough analysis and experimental valida-

tion of the proposed data structures and algorithms for computing both the Demp-

ster’s conditional and the Fagin-Halpern conditional, the two most widely utilized

DST conditional strategies. Two new computational libraries, which we refer to as

CCL (Conditional Computation Library), and DS-CONAC (DS-Conditional-One and

DS-Conditional-All in C++) are developed and harnessed in our work.

The current work that is being carried out involves developing efficient algorithms

for DST fusion strategies, including Dempster’s rule of combination, Conditional Up-

date Equation (CUE), Conditional Fusion Equation (CFE) and pignistic transforma-

tion. Our research will include developing data structures to work with general low

density bodies of evidence, as well as special categories like Dirichlet belief functions

and consonant belief functions. We are working on computations involving poten-

tially dynamic frames. A collection of effective visualization tools and computational

libraries complementing our work will be made available.
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CHAPTER 1

Introduction

”As far as the laws of mathematics refer to reality, they are not certain; and as

far as they are certain, they do not refer to reality” - Albert Einstein

1.1 Reasoning Under Uncertainty: The Role of

Dempster-Shafer (DS) Belief Theory

The recent momentum in Artificial Intelligence (AI) is a culmination of well con-

structed algorithms, unprecedented processing power of computers, and effective use

of large flows of data. Today expert systems beat champion players at Chess and

Go [1, 2], allow AI assistants to book appointments over the phone [3], diagnose and

predict disease in health care [4, 5], and drive autonomous vehicles [6]. However un-

certainty is unavoidable in many real-world domains, and expert systems are still

prone to collapse due to the difficulty in replicating complex environments [7, 8]. To

accommodate uncertainty and data imperfections intelligently, we need to have effec-

tive models to capture them and then we must propagate and reason with these data

uncertainties.

1
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The Dempster-Shafer (DS) belief theory, also referred to as DS evidence theory,

is a powerful and convenient framework that can handle a wide variety of uncertainty

and data imperfections [9–11]. Dempster-Shafer (DS) theory was first introduced

by Dempster [12,13] in the context of statistical inference. It was later developed by

Shafer [14] into a general framework for uncertainty modeling. The name “Dempster-

Shafer theory” was coined in [15], which also introduced the theory to a wider audience

in the AI community. The early contributions laid the foundation for many important

developments, including the transferable belief model (TBM) [16] and the theory of

hints [17]. DS theoretic (DST) approach offers a convenient framework for reasoning

when prior information is lacking. Consequently, DST methods are finding increased

utilization in numerous application scenarios and have generated an active research

field [11,18–21].

1.2 Motivation

While DS theory offers greater expressiveness and flexibility in evidential reason-

ing under uncertainty [22], these advantages come at a cost: DST operations involve

an additional cost in terms of higher computational complexity, especially when com-

pared to methods based on classical probability theory. Computing the DST condi-

tionals, a key operation in evidence updating and fusion, and even the computation

of DST belief functions, are non-deterministic polynomial-time hardness (NP-hard)

problems [23, 24]. This computational difficulty is the main criticism that the DS

formalism has drawn since its very inception [11].

A major challenge for harnessing the advantages of DS theory in practice is to

overcome this computational complexity challenge, especially when working with large
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‘frames of discernment’. The problem is further exacerbated by the absence of a

flexible and scalable platform for visualizing the complex operations involved DS

theory.

The development of an efficient computational framework is of critical importance

if we are to harness the strengths of DS theory and make it more widely applicable in

practice and in real-world scenarios, and this problem has been identified as an issue

that requires increased attention [25].

1.3 Challenges

1.3.1 Making Exact Computations Feasible

In order to address the high computational complexity of DST belief compu-

tations, several approximation methods have been discussed [26–32]. Most of these

approximation algorithms provide lower bounds which are obtained by removing some

of the focal elements with or without redistributing the corresponding belief poten-

tials [26–30]. More sophisticated methods produce lower and upper bounds, thus

improving the quality of the approximation [31, 32]. These methods provide approx-

imate and not exact belief potentials. Many of these approaches dramatically reduce

the quality of the approximation when applied to the conditional and fusion opera-

tions, and some lack the ability to be extended for DST conditional computations.

The quality of evidence updating and fusion strategies depend directly on the pre-

cision of the underlying computations. Thus, making exact (or precise) computations

feasible is of utmost importance for purposes of reasoning under uncertainty. A fast

Möbius transform, which is analogous to the fast Fourier transform (FFT), has also
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been developed toward efficient DST computations [33–35]. It is worth pointing out

that Shafer has stated, “It remains to be seen how useful the fast Möbius transform

will be in practice. It is clear, however, that it is not enough to make arbitrary belief

function computations feasible.” [22, p.348].

1.3.2 Developing a Feasible and Scalable Computational Frame-

work

There is no computationally feasible and scalable generalized framework to repre-

sent DST models and carry out DST operations. We do not believe that the present

literature has given due attention to this issue [9, 11]. A thoughtful discussion about

data structures and algorithms for efficient DST computations is still lacking. The

development of an efficient and scalable computational framework, which includes a

wide range of data structures and well constructed algorithms, is essential in order to

utilize the strengths of DS methods in practical applications.

1.3.3 Handling Large Frames of Discernment

DST implementations in current use are limited to computations on smaller frames

of discernment, and they lack the ability to handle larger frames mainly due to the

prohibitive computational complexity they engender. A review of current implemen-

tations and applications [9, 11, 36] confirms that work is needed to overcome these

computational limitations.
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1.3.4 Efficient Computation of DST Conditionals

As in the Bayesian methods [37], the conditional operation plays a fundamental

role in DST strategies for evidence updating and fusion and in general, in reasoning

under uncertainty. There are numerous strategies of DST conditioning that have

appeared in the literature [14, 38–42]. The selection of the appropriate conditioning

strategy must always be given due consideration.

Among these various conditional notions that have been proposed over the years,

perhaps the most extensively utilized DST conditional notion is the Dempster’s con-

ditional [14, 43–46]. On the other hand, the Fagin-Halpern (FH) conditional can

be considered the most natural generalization of the probabilistic conditional notion

because of its close connection with the inner and outer conditional probability mea-

sures [40]. Recent work on the DST conditional approach [47, 48], which is based on

the FH conditional, demonstrate how both soft and hard evidence can be incorporated

into the reasoning process with DST methods.

A review of existing studies on precise belief computations and their applications

[33–36,43,46,49–57] reveals that more work is needed to overcome these computational

limitations associated with DST conditionals. The fast Möbius transform which has

been utilized for efficient and precise computation of DST belief functions [33–35,50]

has not been employed for the computation of DST conditionals.

As for the Dempster’s conditional, perhaps the most thorough discussions for car-

rying out its precise computation appears in [43, 46]. It provides a matrix calculus

based algorithm to compute Dempster’s conditional masses. However, this approach

is feasible only on smaller frames because of the expensive matrix operations involved

with a certain specialization matrix which is a 2|Θ| × 2|Θ| stochastic matrix (|Θ| is
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cardinality of the frame of discernment). For example, the theoretical computational

time for this method is more than 1800 CPU (Central Processing Unit) years for a

frame size of 30 and more than 15 CPU hours for a frame size of 20 (assuming 10

million computational iterations per second). Computational complexity and space

complexity are both O(2|Θ|× 2|Θ|) for this approach. Thus, the computation is infea-

sible for larger frames.

This method is not applicable for computing the FH conditional. As for FH condi-

tional computation, the work in [58,59] presents the conditional core theorem (CCT)

to identify propositions that retain non-zero support after FH conditioning. However,

this approach does not address conditional computation of these propositions. The

computational complexity of the CCT becomes O(2|Θ|× 2|Θ|) for high density bodies

of evidence, thus the conditional computation becomes prohibitive for larger frames.

1.3.5 Visualization and Analysis of Complex DST Opera-

tions

Many scientific disciplines involve the analysis of large collections of numeric data.

Scientific visualization involves transforming numeric data into more visual forms so

that scientists can understand and gain insights from this data readily [60]. Visual-

ization has become an effective technology [61], especially in the analysis of complex

situations, and in reasoning of both abstract and concrete ideas. Similarly, the abil-

ity to visualize complex DST computations and simulations is absolutely essential

to ensure the integrity of representation and reasoning, to provoke insights, and to

carefully improve the computational performance.



7

1.4 Contributions

The work being proposed is an attempt to fill the void between what DS theory

can offer and its practical implementation. We now summarize the main contribution

of this research work.

1.4.1 Scalable Generalized Computational Framework

We introduce a novel generalized computational framework where we develop

three different representations — DS-Vector, DS-Matrix, and DS-Tree — that offer

significantly greater computational capability for representation of DST models and

DST operations. They also act as simple tools for visualization of DST models and

the complex nature of the computations involved. A strategy, which we refer to as

REGAP (REcursive Generation of and Access to Propositions), is developed and

used in our development of this computational framework. Relevant data structures

and generalized algorithms to work with the framework are discussed and compared

in Chapter 3 [56,62].

1.4.2 Implicit Index Calculation Mechanism

Popular approaches to represent a focal element (i.e., a proposition which re-

ceives DST ‘support’) are the use of a bit-string [33,35,51] or an integer [63]. Binary

representation has been used in combination, marginalization, and projection of mul-

tivariate belief functions [53,54]. Binary representation has also been used to express

the belief computation formulas using matrix calculus [46] and in fusion algorithm

implementations [64]. In Chapter 3, we introduce an implicit index calculation mech-
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anism to represent a focal element, which reduces memory usage and significantly

improves computational performance [56].

1.4.3 Efficient Computation of DST Operations

Using the REGAP strategy, we introduce a new approach to identify propositions

that are relevant to a belief potential computation. This technique is useful for cal-

culating arbitrary belief, plausibility, and commonality potentials from a minimum

number of operations. Implementation of the relevant belief computation algorithms

based on the proposed framework is discussed and compared with alternative ap-

proaches in Chapter 3 [56].

1.4.4 Efficient Computation of DST Conditionals

The main contribution of Chapter 4 and Chapter 5 is a novel scalable, generalized

computational framework for computing DST conditionals. This framework includes

two conditional computational models — DS-Conditional-One and DS-Conditional-

All — which offer significantly greater flexibility and computational capability for

implementation of DST conditional strategies.

• DS-Conditional-One model can be employed to compute both the FH and

Dempster’s conditional beliefs of an arbitrary proposition, as well as to compute

Dempster’s conditional masses of an arbitrary proposition. The difficulty in ar-

bitrary computations is exactly the challenge that Shafer refers to in [22, p.348],

viz., “It remains to be seen how useful the fast Möbius transform will be in prac-

tice. It is clear, however, that it is not enough to make arbitrary belief function

computations feasible.”
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• DS-Conditional-All model can be utilized for efficient computation of all con-

ditional beliefs. Computation of all FH and Dempster’s conditional beliefs are

discussed using this model and it can also be used to compute Dempster’s con-

ditional masses of all propositions.

This computational framework is a significantly better approach to conditional

computations in contrast to the current available strategies. By carefully reducing

the number of operations being executed, the proposed approach takes significantly

less computational and space complexity when compared to other approaches for

conditional computation. For example, our experimental results demonstrate that the

average computational time taken to compute the Dempster’s conditional mass of an

arbitrary proposition by the proposed approach is less than 1.3 (µs) for a frame of size

10 (∼1000 focal elements), 77.2 (µs) for a frame of size 20 (∼1 million focal elements)

and less than 111.3 (ms) for a frame of size 30 (∼1 billion focal elements). Also

the average computational time taken to compute the Dempster’s or Fagin-Halpern

conditional belief of an arbitrary proposition by the proposed approach is less than

1.7 (µs) for a frame of size 10 (∼1000 focal elements), 472.5 (µs) for a frame of size 20

(∼1 million focal elements) and less than 1.6 (sec) for a frame of size 30 (∼1 billion

focal elements). This computational framework can also be utilized as a visualization

tool for conditional computations and in analyzing characteristics of conditioning and

updating operations. The computational implementations in available literature are

limited only to one particular conditional strategy, but the conditional computational

models we present in Chapter 4 and Chapter 5 can be utilized as a common platform

to carry out both Dempster’s and FH conditional computations. We believe that this

computational framework and the associated implementations constitute a significant
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step toward closing the gap between what the DST framework can offer for reasoning

under uncertainty and its utility in practical application scenarios [57,65–67].

1.4.5 Computational Libraries

As an outcome of this research work, three computational libraries which include

all software routines that we have developed are being made available [62,65,67].

The DST data structures and algorithms for DST operations in Chapter 3 are

being made available in a new computational library, which we refer to as BCL

(Belief Computation Library) [62].

The data structures and algorithms in Chapter 4 and Chapter 5 for computing the

Dempster’s conditional and the FH conditional are being made available in two addi-

tional computational libraries, which we refer to as CCL (Conditional Computation

Library) [65] and DS-CONAC (DS-Conditional-One and DS-Conditional-All in C++)

[67].

1.4.6 Effective Visualization Tools

It is a challenging task for the user to quantitatively examine non-deterministic

polynomial-time hardness (NP-hard) problems associated with large frames. Simple

numerical formats and models are not the best way to assist the human brain to

interpret large flows of data associated with such frames. Visualization can assist the

scientist in several ways. Changes in parameters can be readily grasped, patterns and

classifications become more visible, and anomalies in the data can be easily detected.

Therefore, the ability to visualize complex DST computations and simulations is

absolutely essential to reinforce cognition, decision making, and reasoning [60,61].
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We have developed a sequence of scalable graphical illustrations for visualizing

DST computations. We have utilized these visualizations to gain a better understand-

ing of DST computations and to develop efficient algorithms. In Chapter 3 we first vi-

sualize the DST operations using DS-Vector, DS-Matrix and DS-Tree data structures.

We then visualize the arbitrary conditional computations using DS-Conditional-One

model in Chapter 4 [57, 65], and all conditional computations using DS-Conditional-

All model in Chapter 5 [66,67].

1.5 Organization of the Dissertation Proposal

The organization of the dissertation proposal is as follows:

1.5.1 Chapter 2 Preliminaries

Chapter 2 provides a review of those notions related to DS theory that are essential

for the work presented in this dissertation proposal.

1.5.2 Chapter 3 A Framework for Efficient Computation of

Belief Theoretic Operations

Chapter 3 presents a novel generalized computational framework for efficient com-

putation of belief theoretic operations. We develop three representations — DS-

Vector, DS-Matrix, and DS-Tree — which allow DST computation to be performed

in significantly less time. These three representations can also be utilized as tools

for visualizing DST models. A new strategy, which we refer to as REGAP, which

allows REcursive Generation of and Access to Propositions is introduced and har-
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nessed in the development of this framework and computational algorithms. A new

computational library, which we refer to as BCL (Belief Computation Library) [62]

is developed and utilized in the simulations. We provide a discussion and experi-

mental validation of the utility, efficiency, and implementation of the proposed data

structures and algorithms [56].

1.5.3 Chapter 4 DS-Conditional-One: Efficient and Exact

Computation of Arbitrary Conditionals

Chapter 4 addresses the critical challenge of computing DST conditionals via a

novel generalized conditional computational model — DS-Conditional-One — which

allows the conditional to be computed in significantly less computational and space

complexity. This computational model also provides valuable insight into the DS

theoretic conditional itself and can be utilized as a tool for visualizing the conditional

computation. We provide a thorough analysis and experimental validation of the

utility, efficiency, and implementation of the proposed data structures and algorithms

for carrying out both the Dempster’s conditional and FH conditional. A new compu-

tational library, which we refer to as CCL (Conditional Computation Library) [65], is

developed and harnessed in the simulations [57].

1.5.4 Chapter 5 DS-Conditional-All: Efficient and Exact Com-

putation of All Conditionals

Chapter 5 provides a novel generalized conditional computational model — DS-

Conditional-All — which allows significantly less computational and space complex-

ity when computing all conditional masses and beliefs. This computational model
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also provides deeper insight into the DST conditional itself and can be utilized as

a tool for visualizing the conditional computation. We provide a thorough analysis

of the proposed data structures and algorithms for computing both the Dempster’s

conditional and FH conditional. A new computational library, which we refer to as

DS-CONAC (DS-Conditional-One and DS-Conditional-All in C++) [67] is developed

and harnessed in the simulations [66].

1.5.5 Chapter 6 Operations on Dynamic Frames

Chapter 6 presents algorithms for operations on dynamic frames. Removing one

singleton from a frame removes half the propositions that need to be considered. Thus,

from a computational perspective, the ability to add, remove, and update singletons

in a frame is highly important. Adding and removing operations are discussed in this

chapter using the data structures DS-Vector, DS-Matrix, and DS-Tree.

1.5.6 Chapter 7 Future Work

Chapter 7 provides a discussion of our future work. Based on the proposed com-

putational framework, we are working on developing efficient algorithms for DST

fusion strategies, including Dempster’s rule of combination [14], Conditional Update

Equation (CUE) [47], Conditional Fusion Equation (CFE) [68], and pignistic trans-

formation [16, 69,70].

The current work that is being carried out involves developing efficient algorithms

and data structures to work with general low density bodies of evidence, as well as

special categories like Dirichlet belief functions [71,72] and consonant belief functions

[14]. We are also conducting a wide range of experiments with dynamic operations
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to improve and conclude the work discussed in Chapter 6. This would be of immense

value for enhanced resource utilization.

Synthetic aperture radar (SAR) interferometry (InSAR) [73] is an important tech-

nique that can measure terrain deformation with high precision. It has applications

for geophysical monitoring including earthquakes, volcanic eruptions, landslides, and

hydrological subsidence [74–79]. Our contributions will include a new selection crite-

rion to identify the best baseline network, which is a primary component in InSAR

processing [73]. This is still an open challenge. We have conducted two research stud-

ies: network selection using centrality concepts [80]; and identifying good networks

applying deep learning [81] techniques. Both these initial steps yielded promising

results. The ongoing challenging task is to adapt uncertainty reasoning capabilities

and develop a robust application for InSAR processing.

Geometrical exposition is an important consideration in designing effective data

structures and algorithms. Two novel DST visualization tools are being devised in

order to scrutinize complex fusion strategies and to augment computational optimiza-

tion. We call these tools DS-LASIC (DS-Layered Symmetric Clustering) diagram and

DS-TRISEV (DS-Three Dimensional Spring Electrical Visualization) model. Based

on these tools, we are developing a new class of Venn diagrams [82] for computational

analysis which are flexible and expandable. In addition to the possible advantages we

can gain in DST implementations, perhaps this will be of importance to the fields of

discrete and computational geometry, and combinatorics.

A collection of open source computational libraries will be made available as an

outcome of this research.
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Preliminaries

2.1 DST Basic Notions

In DS theory, the frame of discernment (FoD) refers to the set of all possible

mutually exclusive and exhaustive propositions [14]. We consider the case where the

FoD is finite and we denote it as Θ = {θ0, θ1, . . . , θn−1}. Note that, for computational

ease, we use the indices 0 and n − 1 for the first and the last elements, respectively.

Proposition {θi}, which is referred to as a singleton, represents the lowest level of

discernible information. The power set of Θ, denoted by 2Θ, form all the propositions

of interest in DS theory. A proposition that is not a singleton is referred to as a

composite. The set A\B denotes all singletons in A ⊆ Θ that are not included in

B ⊆ Θ, i.e., A\B = {θi ∈ Θ | θi ∈ A, θi /∈ B}. We use A to denote Θ\A and |A| to

denote the cardinality of A.

2.1.1 Basic Belief Assignment (BBA) or Masses

In DS theory, the basic belief assignment (BBA) or mass is used to represent the

‘support’ that is strictly allocated to a given proposition.

15
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Definition 1 (Basic Belief Assignment (BBA) or Masses) The mapping m :

2Θ 7→ [0, 1] is said to be a basic belief assignment (BBA) or a mass assignment if

m(∅) = 0 and
∑
A⊆Θ

m(A) = 1.

The mass of a composite proposition (a general focal element) is free to move into

its subsets and specially into individual singletons, which allows one to model the

notion of ignorance. Complete ignorance can be modeled via the vacuous BBA:

m(A) = 1Θ ≡


1, for A = Θ;

0, for A ⊂ Θ.

(2.1)

Propositions that possess nonzero mass are referred to as focal elements; the set of all

focal elements in an FoD is referred to as its core F, i.e., F = {A ⊆ Θ | m(A) > 0}.

Note that |F| is the number of focal elements. E = {Θ,F,m(·)} is referred to as the

body of evidence (BoE).

2.1.2 Belief

The belief assigned to a proposition takes into account the support for all of its

subsets.

Definition 2 (Belief) Given a BoE E = {Θ,F,m(·)}, the belief assigned to A ⊆ Θ

is Bl : 2Θ 7→ [0, 1] where

Bl(A) =
∑
B⊆A

m(B).

Propositions that possess nonzero belief are denoted by F̂, i.e., F̂ = {A ⊆ Θ |

Bl(A) > 0}.
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Also, given a valid belief function Bl : 2Θ 7→ [0, 1], one may generate the corre-

sponding BBA m : 2Θ 7→ [0, 1] via the Möbius transform [14]

m(A) =
∑
B⊆A

(−1)|A\B|Bl(B), ∀A ⊆ Θ. (2.2)

2.1.3 Plausibility

The plausibility measures the extent to which a proposition is plausible, i.e., the

amount of belief not strictly supporting the complement of the proposition.

Definition 3 (Plausibility) Given a BoE E = {Θ,F,m(·)}, the plausibility as-

signed to A ⊆ Θ is Pl : 2Θ 7→ [0, 1] where

Pl(A) = 1−Bl(A).

It is easy to see that, for all A ⊆ Θ,

Pl(A) =
∑
B⊆Θ

B∩A 6=∅

m(B) = 1−Bl(A) ≥ Bl(A), ∀A ⊆ Θ. (2.3)

The uncertainty Un(A) associated with the proposition A ⊆ Θ is taken as the

interval Un(A) = [Bl(A), P l(A)].

2.1.4 Commonality

The commonality quantifies the support for those propositions that imply a given

proposition.

Definition 4 (Commonality) Given a BoE E = {Θ,F,m(·)}, the commonality

function of A ⊆ Θ is Q : 2Θ 7→ [0, 1] where

Q(A) =
∑

A⊆B⊆Θ

m(B).
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2.2 Dempster’s Conditional

Dempster’s conditional is perhaps the most widely employed DST conditional

notion [14].

Definition 5 (Dempster’s Conditional [14]) Consider the BoE E = {Θ,F,m(·)}

and A ⊆ Θ s.t. Bl(A) 6= 1, or equivalently, Pl(A) 6= 0. The conditional belief

Bl(B‖A) : 2Θ 7→ [0, 1] of B given the conditioning event A is

Bl(B‖A) =
Bl(A ∪B)−Bl(A)

1−Bl(A)
;

Pl(B‖A) =
Pl(A ∩B)

Pl(A)
.

The conditional mass m(B‖A) : 2Θ 7→ [0, 1] of B given the conditioning event A is

m(B‖A) =



∑
C⊆A

m(B ∪ C)

1−Bl(A)
, for ∅ 6= B ⊆ A;

0, otherwise.

One may compute the corresponding conditional mass m(B‖A) and Pl(B‖A)

from Bl(B‖A). Dempster’s conditioning annuls masses of all those propositions that

‘straddle’ the conditioning proposition A and its complement A. So, w.l.o.g., for

Dempster’s conditioning, one may consider only those propositions B ⊆ A.

2.3 Fagin-Halpern (FH) Conditional

FH conditional can be considered the most natural generalization of the proba-

bilistic conditional notion because of its close connection with the inner and outer

conditional probability measures in probability theory [40].
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Definition 6 (Fagin-Halpern (FH) Conditional [40]) Consider the BoE E =

{Θ,F,m(·)} and A ∈ F̂. The conditional belief Bl(B|A) : 2Θ 7→ [0, 1] of B given

the conditioning event A is

Bl(B|A) =
Bl(A ∩B)

Bl(A ∩B) + Pl(A ∩B)
;

Pl(B|A) =
Pl(A ∩B)

Pl(A ∩B) +Bl(A ∩B)
.

The conditional plausibility Pl(B|A) of B given A is computed as Pl(B|A) = 1−

Bl(B|A). Of course, once the conditional beliefs of all the propositions are computed,

one may obtain the corresponding conditional BBA via a Möbius transform of the

type in (2.2).

Suppose the BoE {Θ,F,m(·)} is being conditioned w.r.t. the proposition A ∈ F̂.

The propositions that retain a nonzero mass after conditioning are referred to as the

conditional focal elements; the set of all such conditional focal elements is referred to

as the conditional core FA, i.e., FA = {B ⊆ A ∈ F̂ | m(B|A) > 0}.

Similar to Dempster’s conditioning, FH conditioning annuls masses of all those

propositions that ‘straddle’ the conditioning proposition A and its complement A.

So, w.l.o.g., for FH conditioning, one may consider only those propositions B ⊆ A.



CHAPTER 3

A Framework for Efficient Computation of
Belief Theoretic Operations

The work in this chapter is an attempt to fill the void between what DS theory can

offer and its practical implementation. For this purpose, we introduce a novel gen-

eralized computational framework where we develop three different representations

— DS-Vector, DS-Matrix, and DS-Tree — which offer significantly greater computa-

tional capability for representation of DST models and DST operations. They also act

as simple tools for visualization of DST models and the complex nature of the com-

putations involved. A strategy, which we refer to as REGAP (REcursive Generation

of and Access to Propositions), is developed and used in development of this com-

putational framework. We also introduce an implicit index calculation mechanism

to represent a focal element, which reduces memory usage and significantly improves

computational performance.

We introduce a new approach to identify propositions that are relevant to a belief

potential computation, using the REGAP strategy. This technique is useful for cal-

culating arbitrary belief, plausibility, and commonality potentials from a minimum

number of operations. Implementation of the relevant belief computation algorithms

based on the proposed framework is discussed and compared with alternative ap-

20
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proaches. A new computational library, which we refer to as BCL (Belief Computation

Library) [62] is developed and utilized in the simulations [56].

This chapter is organized as follows: Section 3.1 introduces our generalized com-

putational framework; Section 3.2 contains efficient algorithms for belief potential

computation of arbitrary propositions; Section 3.3 contains comparisons and experi-

mental results; Section 3.4 provides the concluding remarks.

3.1 A General Computational Framework

Henceforth, for convenience, we will use the notation N to denote 2n, where

n = |Θ|. Note that, N = 2n is the maximum number of focal elements that a BoE

could possess. Actually, the maximum number of focal elements is N − 1, but this

difference is immaterial especially when working with a large FoD. Also we will refer

to the subsets of A and A itself as subset propositions of A and use the notation M

to denote 2m, where m = |A|.

A lookup table named power is used to enhance the computational efficiency. It

contains 2 to the power of singleton indexes in increasing order and was implemented

using a dynamic array that replaces run-time computation of power values with a

simpler array indexing operation. Power[i] is referred to as 2 to the power of i, which

is the i’th entry in the power table.

Computational complexity of DST computations directly depends on the access

speed of focal elements and corresponding belief values. In recent literature, the

commonly used approach for such computations is the utilization of list structures

for both focal elements and respective belief values, or hard coding relevant values

[36,53,63]. Representation as a list or a set of pairs of focal elements and relevant belief
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values are also used. Accessing a focal element in list implementation requires cycling

through the lists, and complexity of this operation is O(|F|). In the novel generalized

computational framework that is being proposed in this chapter, propositions are

identified via an implicit index. Therefore, there is no overhead on storing focal

elements as a bit-string, an integer, or any other method; only belief potentials require

to be stored. Due to the efficient access operations, the proposed method can be

utilized to gain a significant advantage on computational efficiency when dealing with

large BoEs. List structures become attractive when considering the memory usage

aspect of static BoEs, with a fewer number of focal elements.

The proposed belief computation strategy provides generated indices. Therefore,

computational complexity of an element access is O(1) (i.e., constant) during belief

computations. In the provided general access algorithms which include index gener-

ation, the computational complexity is O(m).

3.1.1 REGAP: REcursive Generation of and Access to Propositions

Figure 3.1: REGAP: REcursive Generation of and Access to Propositions.

Consider the FoD Θ = {θ0, θ1, . . . , θn−1}. Suppose we desire to determine the belief

potential Bl(A) associated with A = {θk0 , θk1 , . . . , θk|A|−1
} ⊆ Θ. Then, REGAP (A)

recursively generates all the 2|A|−1 propositions whose masses are required to compute
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Bl(A), viz., all subsets of A (including A itself). We will refer to the subsets of A

and A itself as subset propositions of A. REGAP (A) is implemented in the following

manner: Start with {∅}. First insert the singleton {θk0} ∈ A. Only one proposition

is associated with this singleton, viz., {∅} ∪ {θk0} = {θk0} itself. Next insert another

singleton {θk1} ∈ A. The new propositions that are associated with this singleton

are {∅} ∪ {θk1} = {θk1} and {θk0} ∪ {θk1} = {θk0 , θk1}. Inserting the next singleton

{θk2} ∈ A brings the new propositions {∅}∪{θk2} = {θk2}, {θk0}∪{θk2} = {θk0 , θk2},

{θk1} ∪ {θk2} = {θk1 , θk2}, and {θk0 , θk1} ∪ {θk2} = {θk0 , θk1 , θk2}. In essence, when

a new singleton is added, new propositions associated with it can be recursively

generated by adding the new singleton to each existing proposition. Of course, all

propositions of interest within the FoD Θ can be generated by REGAP (Θ), i.e., when

A = Θ.

We refer to this recursive scheme as REGAP, which stands for REcursive Generation

of and Access to Propositions. It is illustrated in Fig. 3.1. These recursively gener-

ated propositions can be formulated as a vector, a matrix or a tree, and utilized to

represent a dynamic BoE.

3.1.1.1 DS-Vector: Vector Representation of a Dynamic BoE

All propositions generated via REGAP can be represented using a dynamic vector,

which we refer to as a DS-Vector. This is illustrated in Fig. 3.2. It can also be used

as a visualization tool of a dynamic BoE.

From a computational point of view, a DS-Vector can be viewed as a dynamic ar-

ray data structure [83]. Propositions are represented by implicit contiguous indexes,

which are considered as implicit bit-strings or decimal integers. So, no memory al-
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Figure 3.2: DS-Vector: Vector representation of a dynamic BoE.

location is needed to store a proposition. Memory allocation is needed only to store

the required belief potentials (or, more generally, mass, belief, plausibility, or com-

monality potentials).

Algorithm 1 provides an implementation to access a belief potential in O(m)

complexity. When the proposition index is available, this becomes a constant time

(i.e., O(1)) operation.

Algorithm 1 Access a belief potential in a DS-Vector

1: procedure AccessPotential(Singletons A)
2: index← 0
3: for each θi in A do
4: index← index+ power[i]
5: end for
6: Return potential[index]
7: end procedure

The salient steps in the algorithm are as follows:

Line #1: The required proposition can be passed as a bit-string or an integer.

If so, this segment has to be replaced by a single input parameter (a bit-string or

an integer). In this algorithm, the input parameter is represented in a more general

way and passed as A, which includes all the constituent singleton propositions of the

proposition of interest A.
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Lines #3-5: Implicit index of the proposition is calculated by adding 2 to the

power of indexes (power[i]) relevant to all the singleton propositions in A.

Line #6: Propositions are represented by implicit indexes and belief potentials are

stored in the contiguous memory segments of the DS-Vector. Thus, potential[index]

retrieves the respective belief potential.

3.1.1.2 DS-Matrix: Matrix Representation of a Dynamic BoE

All propositions generated via REGAP can also be represented using a dynamic

matrix as illustrated in Fig. 3.3. We refer to this as a DS-Matrix.

Figure 3.3: DS-Matrix: Matrix representation of a dynamic BoE.
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From a computational point of view, the DS-Matrix can be implemented using a

dynamic array of dynamic arrays [83]. Propositions are represented by two implicit

contiguous indexes (i and j), which are considered as two implicit bit-strings or two

decimal integers.

Algorithm 2 provides an implementation to access a belief potential in O(m)

complexity.

Algorithm 2 Access a belief potential in a DS-Matrix

1: procedure AccessPotential(EvenSingletons Ae, OddSingletons Ao)
2: row ← 0
3: col← 0
4: for each θi in Ao do
5: row = row + power[i]
6: end for
7: for each θi in Ae do
8: col = col + power[i]
9: end for

10: Return potential[row][col]
11: end procedure

The main steps in the algorithm are as follows:

Line #1: Input parameters are passed as Ae and Ao; Ae includes even numbered

singletons and Ao includes odd singletons of the proposition of interest A (A = Ae ∪

Ao).

Lines #4-6: Row index is computed by adding 2 to the power of existing odd

singleton indexes (power[i]) in Ao.

Lines #7-9: Column index is calculated from the addition of 2 to the power of

even singleton indexes (power[i]) in Ae.

Line #10: Belief potentials can be accessed by implicit row index and implicit

column index; potential[row][col] retrieves the respective belief potential.
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3.1.1.3 DS-Tree: Perfectly Balanced Binary Tree Representation of a

Dynamic BoE

Another way to represent all propositions generated via REGAP is a perfectly

balanced binary tree [83] as illustrated in Fig. 3.4. We refer to this as a DS-Tree.

When a new singleton is added, the singleton proposition itself stays as the root.

Previous propositions stay on the left sub-tree. The new propositions relevant to the

incoming singleton are generated by applying REGAP. Those elements stay on the

right sub-tree.

Figure 3.4: DS-Tree: Perfectly balanced binary tree representation of a dynamic
BoE.

Propositions are represented by relative positions according to the illustration

provided in Fig. 3.4. So focal elements can be interpreted as implicit bit-strings or

decimal integers. Thus, no memory allocation is needed to store propositions. Only

respective belief potentials are contained in the nodes.
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Representation of propositions follow the perfectly balanced binary search tree

properties [84]. Therefore, it can be implemented using a dynamic array and follows

DS-Vector properties. When the DS-Tree complies with classical binary tree imple-

mentations, Algorithm 3 provides access to a belief potential in O(log(N)) (or O(n)).

Algorithm 3 Access a belief potential in a DS-Tree

1: procedure AccessPotential(FoD Θ, Singletons A, DS-Tree T )
2: index← 0
3: level← |Θ| − 1
4: node← T.root
5: for each θi in A do
6: index← index+ power[i]
7: end for
8: temp← index
9: while temp mod power[level] > 0 do

10: if temp/power[level] = 0 then
11: node← node.left
12: else if temp/power[level] = 1 then
13: temp← temp− power[level]
14: if temp = 0 then
15: break the loop
16: end if
17: node← node.right
18: end if
19: level← level − 1
20: end while
21: Return node.potential
22: end procedure

A belief potential of a proposition can be accessed by traversing through the

implicit indexes of the binary tree. The important steps in the algorithm are as

follows:

Line #1: Input parameters are the FoD Θ, constituent singleton propositions of

the proposition of interest A, and the DS-Tree T .



29

Lines #5-7: Index of the proposition is computed by adding 2 to the power of

singleton indexes (power[i]) in A.

Line #8: The binary tree is traversed down, starting from the root node, until

the condition index mod power[level] > 0 is satisfied.

Lines #10-11: Left sub-tree is traversed if the index is less than the current

implicit index.

Lines #12-18: Right sub-tree is traversed if the index is greater than the current

implicit index.

Line #21: Required node relevant to the proposition is obtained at end of the

traversal. So node.potential gives the relevant belief potential.

3.2 Efficient Algorithms for Arbitrary Belief Com-

putations

Fast Möbius transform was developed towards addressing the high computational

complexity of belief potential calculations [33–35]. However, it is inadequate to make

arbitrary belief function computations feasible, especially when working with large

FoDs [22]. Employing REGAP, we propose a new approach to identify propositions

relevant to a given belief computation. This technique can be used to calculate arbi-

trary belief, plausibility, and commonality function values from a minimum number

of operations.
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3.2.1 Belief Calculation

List structure implementation is the commonly utilized approach to store mass

potentials [36,51,53,63]. Belief calculation requires cycling through the list structure

to recognize whether each focal element should be included in the computation. Thus,

computational complexity of this operation is O(|F|).

The REGAP strategy offers an alternative to generate the required propositions

relevant to the computation of Bl(A), where A ⊆ Θ. In this method, belief computa-

tion is performed by accessing only the subset propositions. The maximum number of

subset propositions that one would have to access is about M = 2m, where m = |A|.

3.2.1.1 DS-Vector

Algorithm 4 provides an implementation to compute a belief potential in O(M)

(or O(2m)) complexity.

Algorithm 4 Computing Belief in a DS-Vector

1: procedure ComputeBelief(Singletons A, Normalize Nlz)
2: belief ← 0
3: count← 0
4: for each θi in A do
5: index[count]← power[i]
6: temp← count
7: count← count+ 1
8: for j ← 0, temp− 1 do
9: index[count]← index[j] + power[i]

10: count← count+ 1
11: end for
12: end for
13: for i← 0, power[|A|]− 2 do
14: belief ← belief + potential[index[i]]
15: end for
16: Return belief/Nlz
17: end procedure
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The main steps in the algorithm are as follows:

Line #1: Input parameters are A and normalizing constant Nlz. Normalizing

constant is the summation of all the mass potential values. mass potential are stored

in raw values to improve the performance.

Lines #4-12: Subset propositions of A are generated by applying REGAP.

Lines #13-15: Belief is the summation of the potentials of relevant generated

implicit indexes. Computational complexity of an iteration isO(1) (access operation).

Line #16: Normalized belief potential is the output parameter of the procedure.

3.2.1.2 DS-Matrix

Figure 3.5: Belief Calculation: Propositions related to Bl(A) computation when
A = {θ0, θ3, θ4}, and Θ = {θ0, θ1, θ2, θ4, θ5, }.

Fig. 3.5 provides an illustration of the belief computation when A = {θ0, θ3, θ4},

and Θ = {θ0, θ1, θ2, θ4, θ5, }.

Algorithm 5 can be used to compute a belief potential in O(M) (or O(2m)) com-

plexity.
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Algorithm 5 Computing Belief in a DS-Matrix

1: procedure ComputeBelief(SingletonCoordinates AP , Normalize Nlz)
2: belief ← 0
3: count← 0
4: for each pair p in AP do
5: index[count].row ← p.row
6: index[count].col← p.col
7: temp← count
8: count← count+ 1
9: for j ← 0, temp− 1 do

10: index[count].row ← index[j].row + p.row
11: index[count].col← index[j].col + p.col
12: count← count+ 1
13: end for
14: end for
15: for i← 0, power[|AP |]− 2 do
16: belief ← belief
17: +potential[index[i].row][index[i].col]
18: end for
19: Return belief/Nlz
20: end procedure

The salient steps in the algorithm are as follows:

Line #1: Input parameters are AP and normalizing constant Nlz. AP contains

row and column coordinate pairs of all the singleton propositions of the proposition

of interest A.

Lines #4-14: Subset propositions of A are obtained by applying REGAP.

Lines #15-18: Belief is the summation of the potentials relevant to the gener-

ated implicit index pairs. Computational complexity of an iteration is O(1) (access

operation).

Line #19: Procedure returns the normalized belief potential.
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3.2.1.3 DS-Tree

Algorithm 6 can be used to compute a belief potential inO(M log(N)) (orO(2mn))

complexity when the DS-Tree is implemented using node structures. Dynamic array

implementation of the DS-Tree complies with algorithm 4 and the belief computation

complexity is O(M) (or O(2m)).

Algorithm 6 Computing Belief in a DS-Tree

1: procedure ComputeBelief(Singletons A, DSTree T , Normalize Nlz)
2: belief ← 0
3: count← 0
4: for each θi in A do
5: index[count]← power[i]
6: temp← count
7: count← count+ 1
8: for j ← 0, temp− 1 do
9: index[count]← index[j] + power[i]

10: count← count+ 1
11: end for
12: end for
13: for i← 0, power[|A|]− 2 do
14: level← |Θ| − 1
15: leaf ← T.root
16: index← index[i]
17: while index mod power[level] > 0 do
18: if index/power[level] = 0 then
19: leaf ← leaf.left
20: else if index/power[level] = 1 then
21: index← index− power[level]
22: if index = 0 then
23: break the loop
24: end if
25: leaf ← leaf.right
26: end if
27: level← level − 1
28: end while
29: belief ← belief + leaf.mass
30: end for
31: Return belief/Nlz
32: end procedure



34

The salient steps in the algorithm are as follows:

Line #1: Input parameters are the proposition of interest A, DSTree T , and

normalizing constant Nlz.

Lines #4-12: Subset propositions of A obtained by applying REGAP.

Lines #13-30: Belief is the summation of the potentials of generated implicit

indexes. Computational complexity of a tree traversal iteration is O(log(N)) (or

O(n)) and follows the Algorithm 3.

Line #31: Normalized belief potential is the output parameter of the procedure.

3.2.2 Plausibility and Commonality Calculation

Figure 3.6: Plausibility Calculation: Propositions related to Pl(A) computation
when A = {θ0, θ3, θ4}, and Θ = {θ0, θ1, θ2, θ4, θ5, }.

Plausibility Pl(A) can be computed by observing that Pl(A) = 1 − Bl(A) and

applying a belief computation algorithm to A. Propositions relevant to commonality

Q(A) calculation can be generated by applying REGAP to A and adding proposition
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A to all the generated propositions. In this way, computations can also be performed

with minor modifications to Algorithms 4, 5, and 6. Computational complexity re-

mains the same as for belief computation algorithms.

Fig. 3.6 illustrates the plausibility computation when A = {θ0, θ3, θ4}, and Θ =

{θ0, θ1, θ2, θ4, θ5, }. This figure clarifies the complexity of plausibility computations

over belief computations. There are 28 propositions for direct Pl(A) computation.

Computing Bl(A) and using the equation Pl(A) = 1 − Bl(A) to compute Pl(A),

accesses only 3 propositions: m(θ1); m(θ2); and m(θ1θ2).

3.3 Experiments

We have developed a novel belief computation library, which we refer to as BCL

(Belief Computation Library) using the C++ programming language [62]. This in-

cludes the implementation of data structures and algorithms for a generalized com-

putational framework, in particular, the three representations DS-Vector, DS-Matrix,

and DS-Tree, for representing DST models and carrying out DST operations. All ex-

periments were simulated on a Macintosh desktop computer (iMac) running Mac OS

X 10.11.3, with 2.9GHz Intel Core i5 processor and 8GB of 1600MHz DDR3 RAM.

Average computational times for accessing arbitrary propositions are listed in

Table 3.1 for different implementations: DS-Vector in algorithm 1, DS-Matrix in

algorithm 2, and common list structure implementation. Results were obtained by

executing the algorithms for 100000 randomly chosen propositions from the FoD and

noting the average CPU time. A random set of focal elements were generated in the

core for each FoD size.
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FoD Size Max. |F| DS-Vector DS-Matrix List Struct.
2 3 0.379 0.393 0.465
4 15 0.400 0.412 0.510
6 63 0.410 0.454 0.739
8 255 0.443 0.449 1.541

10 1023 0.433 0.496 4.632
12 4095 0.465 0.493 16.906
14 16383 0.465 0.527 67.242
16 65535 0.495 0.517 268.443
18 262143 0.529 0.560 1124.060
20 1048575 0.575 0.629 4609.370

Table 3.1: CPU time of accessing a proposition (µs)

From Table 3.1, the speed advantage of the three proposed implementations over

the commonly used list structure implementation is quite clear. With increasing

FoD size, the access times for DS-Vector and DS-Matrix almost remain the same

when compared to the rapid growth of the computational times in list structure

implementation.

Average computational times of a randomly chosen belief computation using the

algorithm 4, algorithm 5, and list structures are given in Table 3.2. Results were

obtained by executing the algorithms for 100000 randomly chosen propositions and

noting the average CPU time. A random set of focal elements were generated in the

core for each FoD size.

The proposed implementations offer better results when compared with the com-

monly used list structure implementation. With increasing FoD size, the average

computational time of a randomly chosen belief function increases very slowly with

DS-Vector and DS-Matrix in comparison to the list structure implementation. The

DS-Tree provides the same experimental results as DS-Vector.
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FoD Size Max. |F| DS-Vector DS-Matrix List Struct.
2 3 0.373 0.362 0.450
4 15 0.378 0.376 0.531
6 63 0.415 0.450 0.833
8 255 0.453 0.508 1.779

10 1023 0.525 0.663 5.529
12 4095 0.655 0.923 20.757
14 16383 0.884 1.314 81.196
16 65535 1.340 2.159 325.930
18 262143 2.107 3.510 1373.110
20 1048575 3.963 6.210 5448.170

Table 3.2: CPU time of a belief computation (µs)

3.4 Concluding Remarks

This chapter provides a general framework along with data structures and efficient

algorithms for DST computations. The data structures presented can also serve as

tools for BoE visualization. We believe that the proposed implementations consti-

tute a significant step forward in harnessing the strengths of DS theory in practical

application scenarios.

The implicit index calculation mechanism that we introduce for the purpose of

representing a proposition serves to reduce the memory usage and to significantly

improve computational efficiency. All the indexes are calculated according to relative

positions in the data structures. Only belief potentials need to be stored. Memory

usage efficiency is greatly improved since representing the proposition as a bit-string

or an integer is unnecessary.

When the index of the proposition is available, the proposed algorithms for ac-

cessing a proposition take a constant time irrespective of the FoD’s size. Therefore

updating a belief potential (or a mass potential) in a BoE can be executed in signifi-
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cantly less time. The proposed REGAP strategy is invaluable in that it allows one to

identify the exact subsets relevant to a given belief computation. Efficient algorithms

for belief calculation of arbitrary propositions are also developed by ensuring that

only a minimum possible number of operations are executed.

Representation of DS-Tree propositions follow the perfectly balanced binary search

tree properties. Therefore, it can be implemented using a dynamic array and can

gain the performance relevant to a DS-Vector. As an outcome of this research work, a

belief computation library (BCL) in C++ which includes all the important operations

to work with belief computations is made available [62]. This will be useful for a

significant performance improvement for applications based on DST methods.



CHAPTER 4

DS-Conditional-One: Efficient and Exact
Computation of Arbitrary Conditionals

The main contribution of this chapter is a new generalized model for computing

DST conditionals. This conditional computational model — DS-Conditional-One —

offers significantly greater flexibility and computational capability for implementation

of DST conditional strategies. This model can be employed to compute both the FH

and Dempster’s conditional beliefs of an arbitrary proposition [57]. By reducing

the number of operations being executed, the proposed approach takes significantly

less computational and space complexity when compared with other approaches for

conditional computation.

This chapter is organized as follows: Section 4.1 provides a review of essential DST

notions and computational tools; Our DS-Conditional-One computational model and

our algorithms for efficient computation of DST conditionals appear next in Sections

4.2 and 4.3, respectively; The experimental results are provided next in Section 4.4;

Finally, Section 4.5 offers some concluding remarks.

39



40

4.1 Theoretical Foundation

The following notations will be useful for our work:

S(A;B) =
∑
∅6=C⊆A;
∅6=D⊆B

m(C ∪D). (4.1)

So, S(A;B) denotes the sum of all mass values of propositions that ‘straddle’ both

A ⊆ Θ and B ⊆ Θ.

T (A;B) =
∑
C⊆A

m(C ∪B). (4.2)

T (A;B) denotes the sum of all mass values of A ⊆ Θ propositions that ‘straddle’

strictly proposition B ⊆ Θ.

We utilize the important results of the following proposition for the development of

computational models and for carrying out both the Dempster’s and FH conditional

computations.

Proposition 1 Consider the BoE E = {Θ,F,m(·)} and A ⊆ Θ. For B ⊆ Θ, con-

sider the mappings ΓA : 2Θ 7→ [0, 1] and ΠA : 2Θ 7→ [0, 1], where

ΓA(B) =
∑
∅6=X⊆A

m((A ∩B) ∪X); ΠA(B) =
∑

Y⊆(A∩B)

ΓA(Y ).

Then the following are true:

(i) ΓA(A ∩ B) = ΓA(B) and ΠA(A ∩ B) = ΠA(B). So, w.l.o.g., we may assume

that B ⊆ A.

(ii) ΓA(∅) = ΠA(∅) = Bl(A).

(iii) ΓA(B) = T (A;A ∩B)−m(A ∩B).

(iv) ΠA(B) = ΠA(∅) + S(A;A ∩B).
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Proof: (i), (ii) and (iii) follow by direct substitution. To show (iv), note that

ΠA(B) =
∑

Y⊆(A∩B)

∅6=X⊆A

m((A ∩ Y ) ∪X).

When Y = ∅, the right-hand side yields ΓA(∅) = ΠA(∅) = Bl(A); else, it yields

S(A;A ∩B). This establishes (iv).

In our work, we will exploit several previous results related to the conditional

core [59,85]. Of particular importance are the following results:

Lemma 1 ( [85]) Consider the BoE E = {Θ,F,m(·)} and A ∈ F̂. Then, the follow-

ing are true:

(i) m(B|A) = 0 whenever A ∩B 6= ∅, and

(ii) Bl(B|A) can be expressed as

Bl(B|A) =
Bl(A ∩B)

Pl(A)− S(A;A ∩B)
, B ⊆ A.

Note that, (i) states that FH conditioning annuls those propositions that ‘straddle’

the conditioning proposition A and its complement A. So, w.l.o.g., for FH condition-

ing, one may consider only those propositions B ⊆ A.

For our work, we will need the following alternate expression for the FH condi-

tional:

Proposition 2 Consider the BoE E = {Θ,F,m(·)} and A ∈ F̂. Then, we may

express Bl(B|A) as

Bl(B|A) =
Bl(A ∩B)

1−Bl(A)− S(A;A ∩B)
, B ⊆ Θ.

Proof: This follows directly from Lemma 1(ii) by using the fact that Bl(A) =

1− Pl(A).
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For our work, we will need the following alternate expressions for the Dempster’s

conditional:

Proposition 3 Consider the BoE E = {Θ,F,m(·)} and A ⊆ Θ s.t. Bl(A) 6= 1.

Then, Bl(B‖A) can be expressed as

Bl(B‖A) =
Bl(A ∩B) + S(A;A ∩B)

1−Bl(A)
, B ⊆ Θ.

Proof: This follows directly from Definition 5 by using the fact that Bl(A∪B) =

Bl(A ∪ (A ∩B)) = Bl(A) +Bl(A ∩B) + S(A;A ∩B).

Propositions 2 and 3 highlight an important fact: the three quantities Bl(A),

Bl(A ∩ B), and S(A;A ∩ B) fully determine both FH and Dempster’s conditionals

Bl(B|A) and Bl(B‖A), respectively. It is this fact that we exploit for computing the

conditional belief of an arbitrary proposition.

Proposition 4 Consider the BoE E = {Θ,F,m(·)} and A ⊆ Θ s.t. Bl(A) 6= 1.

Then, m(B‖A) can be expressed as

m(B‖A) =


T (A;A ∩B)

1−Bl(A)
, for ∅ 6= B ⊆ A;

0, otherwise.

Proof: This follows by direct substitution.

The propositions recursively generated via the REGAP property can be repre-

sented as a vector, DS-Vector, a matrix, DS-Matrix, or a tree, DS-Tree, and utilized

to capture a BoE. We will utilize this REGAP property and the DS-Matrix structure

in this work too.
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4.2 DS-Conditional-One Computational Model

DS-Conditional-One is a computational model that enables one to compute the

FH and Dempster’s conditional beliefs of an arbitrary proposition. This model can

also be used to compute Dempster’s conditional masses of an arbitrary proposition.

DS-Conditional-One model facilitates the representation, access, and efficient com-

putation of the quantities that are needed to compute these conditionals (see Propo-

sitions 2, 3 and 4).

Figure 4.1: DS-Conditional-One model. Quantities related to arbitrary Bl(B|A)
(or Bl(B‖A)) computation when A = {a0, a1, . . . , a|A|−1}, A = {α0, α1, . . . , α|A|−1},
and B = {a0, a2} ⊆ A.
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Henceforth, we will denote the conditioning proposition A, its complement A,

and the conditioned proposition B as {a0, a1, . . . , a|A|−1}, {α0, α1, . . . , α|A|−1}, and

{b0, b1, . . . , b|B|−1}, respectively. Here, Θ = {θ0, θ1, . . . , θn−1} denotes the FoD and

ai, αj, bk ∈ Θ. When dealing with FH and Dempster’s conditioning, it is implicitly

assumed that A ∈ F̂ and Bl(A) 6= 1, respectively.

Furthermore, we will represent singletons of the conditioning event A = {a0, a1,

. . . , a|A|−1} as column singletons and singletons of the complement of conditioning

event A = {α0, α1, . . . , α|A|−1} as row singletons in a DS-Matrix. See Fig. 4.1.

The proposed DS-Conditional-One computational model allows direct identifica-

tion of REGAP (A), REGAP (A), REGAP (A∩B), (REGAP (A)×REGAP (A∩B)),

(REGAP (A)×REGAP (A)), (REGAP (A)×B), and ΓA(C), ∀C ⊆ B. Among these,

the following three quantities are required to compute both FH and Dempster’s con-

ditional belief of an arbitrary proposition (see Propositions 2 and 3):

(a) REGAP (A ∩B): Use this to compute Bl(A ∩B) (see Algorithm 7).

(b) REGAP (A) which is ΓA(∅): Use this to compute Bl(A) (see Algorithm 8).

(c) (REGAP (A)×REGAP (A ∩ B)), the Cartesian product of REGAP (A) and

REGAP (A ∩B): Use this to compute S(A;A ∩B) (see Algorithm 9).

Fig. 4.1 depicts these quantities for A = {a0, a1, . . . , a|A|−1}, A = {α0, α1, . . . ,

α|A|−1}, and B = {a0, a2} ⊆ A.

The following quantity is required to compute Dempster’s conditional mass of an

arbitrary proposition (see Proposition 4):

(A ∩ B) + (REGAP (A)×(A ∩ B)), the Cartesian product of REGAP (A) and

(A ∩B): Use this to compute T (A;A ∩B) (see Algorithm 10).
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In the algorithms to follow, we use a lookup table named power to enhance the

computational efficiency. It contains 2 to the power of singleton indexes in increasing

order and it is implemented using a dynamic array that replaces run-time computation

of 2 to the power values with a simpler array indexing operation. The J-th entry of

the power table, power[J ], refers to 2J . A dynamic array, index[], keeps the indexes

of subset propositions of A ∩B.

4.2.1 Time Complexity of Algorithm 7

Algorithm 7 Compute Bl(A ∩B) (O(2|A∩B|))

1: procedure BlB(Singletons A, Singletons B, DS-Matrix BBA[][])
2: beliefb← 0
3: count← 0
4: for each aJ in A ∩B do
5: index[count]← power[J ]
6: temp← count
7: count← count+ 1
8: for t← 0, temp− 1 do
9: index[count]← index[t] + power[J ]

10: count← count+ 1
11: end for
12: end for
13: for t← 0, power[|A ∩B|]− 2 do
14: beliefb← beliefb+BBA[0][index[t]]
15: end for
16: Return beliefb
17: end procedure

This computes Bl(A ∩B) in O(2|A∩B|) complexity.

Line #1: The algorithm inputs are the conditioning event A, conditioned event

B, and the DS-Matrix BBA[][].

Lines #4-12: The outer loop is executed (|A ∩B|) times.
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Lines #8-11: The inner loop is executed (temp) times. It can be shown that for

` = 0, 1, 2, . . . , |A ∩B| − 1, temp = (2` − 1).

Lines #5 and #9 are constant time operations. Thus, the computational com-

plexity of lines #4-12 is given by

|A∩B|−1∑
`=0

(1 + temp) =

|A∩B|−1∑
`=0

2`

= 2|A∩B| − 1 = O(2|A∩B|).

(4.3)

Lines #13-15: The required number of iterations is (2|A∩B|−1) and the complexity

of this segment is O(2|A∩B|).

Line #16: The algorithm output is Bl(A ∩B).

4.2.2 Time Complexity of Algorithm 8

Algorithm 8 Compute Bl(A) (O(2|A|))

1: procedure BlAComp(Singletons A, DS-Matrix BBA[][])
2: beliefacomp← 0
3: for i← 1, power[|A|]− 1 do
4: beliefacomp← beliefacomp+BBA[i][0]
5: end for
6: Return beliefacomp
7: end procedure

This computes Bl(A) in O(2|A|) complexity.

Line #1: The algorithm inputs are the complement of conditioning event A and

the DS-Matrix BBA[][].

Lines #3-5: The required number of iterations is (2|A|−1) and the computational

complexity of this segment is O(2|A|).

Line #6: The algorithm output is the belief potential Bl(A).
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4.2.3 Time Complexity of Algorithm 9

Algorithm 9 Compute S(A;A ∩B) (O(2|A|+|A∩B|))

1: procedure Strad(Singletons A, Singletons A, Singletons B, DS-Matrix
BBA[][])

2: strad← 0
3: count← 0
4: for each aJ in A ∩B do
5: index[count]← power[J ]
6: temp← count
7: count← count+ 1
8: for t← 0, temp− 1 do
9: index[count]← index[t] + power[J ]

10: count← count+ 1
11: end for
12: end for
13: for t← 0, power[|A ∩B|]− 2 do
14: for i← 1, power[|A|]− 1 do
15: strad← strad+BBA[i][index[t]]
16: end for
17: end for
18: Return strad
19: end procedure

This computes S(A;A ∩B) in O(2|A|+|A∩B|) complexity.

Line #1: The algorithm inputs are the complement of conditioning event A, the

conditioning and conditioned propositions A and B, respectively, and the DS-Matrix

BBA[][].

Lines #4-12: Subset propositions of A ∩ B are generated via REGAP (A ∩ B).

Computational complexity of this segment is O(2|A∩B|), which can be obtained from

equation 4.3.

Lines #13-17: The outer loop is executed (2|A∩B| − 1) times. Lines #14-16:

The inner loop is executed (2|A| − 1) times. Complexity of an access operation is
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O(1). Thus, the computational complexity of lines #13-17 is (2|A|−1) (2|A∩B|−1) =

O(2|A|+|A∩B|).

Line #18: The algorithm output is S(A;A ∩B).

4.2.4 Time Complexity of Algorithm 10.

Algorithm 10 Compute T (A;A ∩B) (O(max(2|A|, |A ∩B|)))
1: procedure StradStrictB(Singletons A, Singletons A, Singletons B, DS-

Matrix BBA[][])
2: stradstrictb← 0
3: t← 0
4: for each aJ in A ∩B do
5: t← t+ power[J ]
6: end for
7: for i← 0, power[|A|]− 1 do
8: stradstrictb← stradstrictb+BBA[i][t]
9: end for

10: Return stradstrictb
11: end procedure

This computes T (A;A∩B) in O(max(2|A|, |A∩B|)) complexity. When the propo-

sition index (A ∩B) is available, this becomes O(2|A|).

Line #1: The algorithm inputs are the complement of conditioning event A, the

conditioning and conditioned propositions A and B, respectively, and the DS-Matrix

BBA[][].

Lines #4-6: Implicit index of the proposition is calculated by adding 2 to the

power of indexes (power[J ]) relevant to all singleton propositions in A ∩ B. The

required number of iterations is (|A ∩ B|) and the computational complexity of this

segment is O(|A∩B|). When the proposition index (A∩B) is available, this becomes

a constant time (O(1)) operation.
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Lines #7-9: The required number of iterations is (2|A|) and the computational

complexity of this segment is O(2|A|).

Line #10: The algorithm output is T (A;A ∩B).

4.2.5 Space Complexity of Algorithms 7, 8, 9, and 10.

The matrix in Fig. 4.1 is of size 2|A|×2|A|. Hence, the space complexity associated

with each algorithm above is O(2|Θ|).

Note that in DS-Conditional-One model, REGAP (A) captures all propositions

that may contribute to the conditional core FA. REGAP (A) and (REGAP (A)×

REGAP (A)) which is the Cartesian product of REGAP (A) and REGAP (A), cap-

ture all propositions whose masses are annulled (as identified by Lemma 1 [85]). See

Fig 4.1.

4.3 Efficient Computation of DST Conditionals

In this section, we discuss efficient computation of arbitrary DST conditionals

using the — DS-Conditional-One — computational model (See Fig. 4.1). This model

can be employed to compute both the FH and Dempster’s conditional beliefs of an

arbitrary proposition, as well as to compute Dempster’s conditional masses of an

arbitrary proposition.
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4.3.1 Computation of the FH Conditional Belief of an Arbi-

trary Proposition

To compute the FH conditional belief of an arbitrary proposition B, one can now

use the expression in Proposition 2, where Bl(A ∩ B), Bl(A) and S(A;A ∩ B) are

obtained via Algorithms 7, 8, and 9, respectively. Thus the computational complexity

of this computation remains as O(2|A|+|A∩B|).

As an example, to compute Bl(B|A), where B = {a0, a2}, we may proceed as

follows:

(a) REGAP (A∩B) captures the propositions that contribute to Bl(A∩B). Use

Algorithm 7 to compute this.

(b) REGAP (A) captures the propositions that contribute to Bl(A). Use Algo-

rithm 8 to compute this. Note that Bl(A) is represented by ΓA(∅) in Fig. 4.1.

(c) The Cartesian product (REGAP (A)×REGAP (A∩B)) captures the propo-

sitions that contribute to S(A;A ∩B). Use Algorithm 9 to compute this.

S(A;A ∩B) = ΓA({a0}) + ΓA({a2}) + ΓA({a0, a2}).

Then, Bl(B|A) for B = {a0, a2} is computed as

Bl(B|A) =

Bl(A ∩B)

1− ΓA({∅})− ΓA({a0})− ΓA({a2})− ΓA({a0, a2})
.

(4.4)

4.3.2 Computation of the Dempster’s Conditional Belief of

an Arbitrary Proposition

To compute the Dempster’s conditional belief of an arbitrary proposition B, one

can use the expression in Proposition 3, where Bl(A∩B), Bl(A) and S(A;A∩B) are
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obtained via Algorithms 7, 8, and 9, respectively. Thus the computational complexity

is O(2|A|+|A∩B|).

Consider the same example as before, viz., B = {a0, a2}. Then, we may compute

Bl(B‖A) as

Bl(B‖A) =

Bl(A ∩B) + ΓA({a0}) + ΓA({a2}) + ΓA({a0, a2})
1− ΓA({∅})

.

(4.5)

4.3.3 Computation of the Dempster’s Conditional Mass of

an Arbitrary Proposition

To compute the Dempster’s conditional mass of an arbitrary proposition B, one

can use the expression in Proposition 4, where Bl(A) and T (A;A ∩ B) are ob-

tained via Algorithms 8, and 10, respectively. Thus the computational complexity is

O(max(2|A|, |A ∩B|).

Consider the same example as before, viz., B = {a0, a2}. Then, to compute

m(B‖A) we may proceed as follows:

(a) REGAP (A) captures the propositions that contribute to Bl(A). Use Algo-

rithm 8 to compute this.

(b) The Cartesian product (REGAP (A) × (A ∩ B)) + (A ∩ B) captures the

propositions that contribute to T (A;A ∩ B), for ∅ 6= B ⊆ A. Use Algorithm 10 to

compute this. When ∅ = B ⊆ A, m(B‖A) = 0.

T (A;A ∩B) = ΓA({a0, a2}) +m({a0, a2}).

Then, m(B‖A) for B = {a0, a2} is computed as

m(B‖A) =
m(A ∩B) + ΓA({a0, a2})

1− ΓA({∅})
. (4.6)
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Computation of the Dempster’s Conditional Mass Using Specialization

Matrix. It is noteworthy that [43] and [46] have proposed a matrix calculus based

algorithm for direct computation of Dempster’s conditional masses. It employs a

2|Θ| × 2|Θ|-sized stochastic matrix SA (with each entry ‘0’ or ‘1’) referred to as the

conditioning specialization matrix and a 2|Θ| × 1-sized vector m(·) containing the

BoE’s focal elements. Then m(·‖A) = SA·m(·) yields Dempster’s conditioning masses

without normalization. The computational and space complexity of the specialization

matrix multiplication is O(2|Θ|×2|Θ|), a prohibitive burden even for modest FoD sizes.

4.4 Experiments

Recall that Algorithms 7, 8, and 9 yield all the parameters (viz., Bl(A ∩ B),

Bl(A), and S(A;A ∩ B)) required for both FH and Dempster’s conditional belief

computations. Once these quantities are computed, computational times for both

conditional belief computations are similar because they require constant time (see

Propositions 2 and 3).

For a given FoD size, we selected a random set of focal elements, with randomly

selected mass values, and conducted 10,000 conditional computations for randomly

chosen propositions A and B ⊆ A. Table 4.1 lists the average computational times

taken by the DS-Conditional-One model and the specialization matrix based method

in [43] and [46].

With the DS-Conditional-One model (which applies to both FH and Dempster’s

conditionals), we use a ‘brute force’ approach to compute all the conditional beliefs

(i.e., compute the conditional belief of every proposition); we then use the FMT

to get the conditional masses for all the propositions [14, 40]. The specialization
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matrix based method (which applies to the Dempster’s conditional only) yields the

conditional masses of all propositions, but the time taken already far exceeds what the

DS-Conditional-One model takes (even including the FMT). So we did not compute

the conditional beliefs with the specialization matrix based method (which would

have required the FMT).

All conditional computations for an arbitrary proposition were done on an iMac

running Mac OS X 10.12.3 (with 2.9GHz Intel Core i5 processor and 8GB of 1600MHz

DDR3 RAM). Conditional computations for all propositions were done on the same

iMac for smaller FoDs and on a supercomputer (http://ccs.miami.edu/pegasus)

for larger FoDs (underlined in Table 4.1). The complete C++ library (CCL) is avail-

able at [65].

Method → DS-Conditional-One Model Specialization Matrix
Conditional → FH or Dempster’s Dempster’s

Bl(B|A) Bl(B|A) m(B|A)
FoD or Bl(B‖A) or Bl(B‖A) or m(B‖A) m(B‖A)

|Θ| Max. |F| (Arbitrary) (All) (All) (All)

2 3 0.0005 0.0011 0.0016 0.0011
4 15 0.0005 0.0038 0.0050 0.0063
6 63 0.0006 0.0128 0.0170 0.0696
8 255 0.0009 0.0517 0.0679 1.0154

10 1,023 0.0017 0.2428 0.3090 93.1590
12 4,095 0.0040 1.3528 1.6186 1,485.6300
14 16,383 0.0120 18.4885 22.4995 25,051.8200
16 65,535 0.0405 146.1480 151.9600 ***
18 262,143 0.1516 1,087.2800 1,113.5300 ***
20 1,048,575 0.6011 8,485.4500 8,862.9800 ***

Table 4.1: DS-Conditional-One model versus specialization matrix based method.
Average computational times (ms) (*** denotes computations not completed within
a feasible time).
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The significant speed advantage offered by the proposed computational model over

the specialization matrix based approach is evident from Table 4.1. For larger FoDs,

the computational burden associated with the specialization matrix based approach

becomes prohibitive because of its space complexity of O(2|Θ| × 2|Θ|). For example,

an FoD of size 20 would need 128 (= 220×220/8) GB of memory to represent the spe-

cialization matrix, if each matrix entry occupies only 1 bit. With increasing FoD size,

the computational time requirement of the DS-Conditional-One model is significantly

less compared to what the specialization matrix based approach requires.

4.5 Concluding Remarks

This chapter provides a general framework for computation of DST conditionals.

The DS-Conditional-One model that we propose can also serve as a tool for visual-

ization and further analysis of the conditional computation process. Our experiment

results demonstrate that the average computational time taken to compute the con-

ditional belief of an arbitrary proposition by the proposed approach is less than 2 (µs)

for a frame of size 10 and 0.7 (ms) for a frame of size 20 (∼1 million focal elements).

The efficiency of these algorithms is mainly because of the significantly reduced

number of operations that are executed. Computational complexity associated with

conditional belief computation of an arbitrary proposition is O(2|A|+|A∩B|). This is

a significant improvement over the O(2|Θ| × 2|Θ|) complexity associated with the

specialization matrix based approach. The DS-Conditional-One model also provides a

significant advantage in terms of memory usage: it requires aO(2|Θ|) space complexity

versus O(2|Θ| × 2|Θ|) for the specialization matrix based approach.
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Another advantage of the proposed approach is that it can be utilized for either

the FH conditional or Dempster’s conditional belief computations. An outcome of

this research is CCL (Conditional Computation Library) which is available at [65]. We

believe that the algorithms we have developed constitute a significant step forward

in harnessing the strengths of DST methods in practical applications.



CHAPTER 5

DS-Conditional-All: Efficient and Exact
Computation of All Conditionals

The main contribution of this chapter is a novel scalable, generalized computa-

tional model — DS-Conditional-All — for computing all DST conditionals. This

model offers greater flexibility and computational capability for implementation of

DST conditional strategies. It is a significantly better approach to conditional com-

putations in contrast to the currently available methods. DS-Conditional-All can

also be utilized as a visualization tool for conditional computations and in analyzing

characteristics of conditioning and updating operations.

Computation of all FH and Dempster’s conditional beliefs are discussed using

this model. It can also be used to compute Dempster’s conditional masses of all

propositions. We provide the complexity analysis, experimental validation of the

utility, efficiency, implementation of the associated data structures and algorithms.

This chapter is organized as follows: Section 5.1 introduces the conditional com-

putational framework; Section 5.2 contains algorithms for efficient computation of all

DST conditionals; Section 5.3 contains comparisons and experimental results; Sec-

tion 5.4 provides the concluding remarks.

56
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5.1 DS-Conditional-All Computational Model

The propositions recursively generated via the REGAP property can be repre-

sented as a vector, DS-Vector, a matrix, DS-Matrix, or a tree, DS-Tree, and utilized

to capture a BoE. We will utilize the REGAP property, the DS-Matrix and DS-Vector

structures in this work too. We also utilize the theoretical derivations obtained in

Section 4.1.

In this chapter, we develop the DS-Conditional-All computational model that en-

ables one to compute the FH and Dempster’s conditional beliefs of all propositions.

This model can also be used to compute Dempster’s conditional masses of all propo-

sitions. DS-Conditional-All model facilitates the representation, access, and efficient

computation of the quantities that are needed to compute these conditionals (see

Propositions 1, 2, 3 and 4).

For this purpose, we utilize the results in [33–35,50] which provide a fast Möbius

transform, which is analogous to the fast Fourier transform (FFT), to convert a

BBA to its corresponding belief potential (as in Definition 2) or to convert a belief

potential to its corresponding BBA (as in (2.2)). When one notices the relationship

between Γ(·) to Π(·) (see Proposition 1) and the relationship between a BBA and its

corresponding belief (see Definition 2), it is clear that this same fast Möbius transform

can be used to convert Γ(·) to Π(·), or vice versa.

We will represent singletons of the conditioning event A = {a0, a1, . . . , a|A|−1}

as column singletons and singletons of the complement of conditioning event A =

{α0, α1, . . . , α|A|−1} as row singletons in a DS-Matrix. See Fig. 5.1.

The proposed DS-Conditional-All computational model allows direct identifica-

tion of REGAP (A), REGAP (A), (REGAP (A)×REGAP (A)), (REGAP (A)×B),
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Figure 5.1: DS-Conditional-All model. Quantities related to Bl(B|A) (or
Bl(B‖A)) computation for all B ⊆ A when A = {a0, a1, . . . , a|A|−1}, and A =
{α0, α1, . . . , α|A|−1}.
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ΓA(B), ∀B ⊆ A and ΠA(B), ∀B ⊆ A. Among these, the following four quantities are

required to compute both FH and Dempster’s conditional belief of all propositions, as

well as to compute Dempster’s conditional mass of all propositions (see Propositions

1, 2, 3 and 4):

(a) REGAP (A): Use this to compute Bl(A) which is ΓA(∅) or ΠA(∅) (see Algo-

rithm 8, or ΓA(∅) can be obtained from the output of Algorithm 11).

(b) (REGAP (A)×B), ∀B ⊆ A: Add the BBA of each column except the BBA of

top element to compute ΓA(B), ∀B ⊆ A. Section 1 of Fig. 5.1 shows this computation

(see Algorithm 11).

(c) Use REGAP (A) to identify the propositions relevant for ΠA(B), ∀B ⊆ A,

computation and apply the fast Möbius transform to get the ΠA(·) values from

ΓA(B), ∀B ⊆ A. Section 2 of Fig. 5.1 illustrates this transformation (see Algo-

rithm 12).

(d) Use REGAP (A) and apply the fast Möbius transform to get the belief values

Bl(B), B ⊆ A, from the BBA m(B), ∀B ⊆ A. Section 3 of Fig. 5.1 illustrates this

transformation (steps of this computation are similar to Algorithm 12).

Fig. 5.1 depicts these quantities related to Bl(B|A) (or Bl(B‖A)) computation

for all B ⊆ A when A = {a0, a1, . . . , a|A|−1}, and A = {α0, α1, . . . , α|A|−1}.

5.1.1 Time Complexity of Algorithm 11

This computes all ΓA in O(2|Θ|) complexity.

Line #1: The algorithm inputs are the complement of conditioning event A,

conditioning event A, and the DS-Matrix BBA[][].
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Algorithm 11 Compute all ΓA (O(2|Θ|))

1: procedure AllΓA(Singletons A, Singletons A, DS-Matrix BBA[][])
2: for j ← 0, power[|A|]− 1 do
3: ΓA[j]← 0
4: end for
5: for j ← 0, power[|A|]− 1 do
6: for i← 1, power[|A|]− 1 do
7: ΓA[j]← ΓA[j] +BBA[i][j]
8: end for
9: end for

10: Return ΓA[]
11: end procedure

Lines #2-4: The required number of iterations is (2|A|) and the complexity of this

segment is O(2|A|).

Lines #5-9: The outer loop is executed (2|A|) times. Lines #6-8: The inner loop

is executed (2|A| − 1) times. Complexity of an access operation is O(1). Thus, the

computational complexity of lines #5-9 is (2|A| − 1) (2|A|) = O(2|A|+|A|) = O(2|Θ|).

Line #10: The algorithm output is ΓA[].

5.1.2 Space Complexity of Algorithm 11

The matrix in Fig. 5.1 is of size 2|A|×2|A|. Hence, the space complexity associated

with the above algorithm is O(2|Θ|).

5.1.3 Time Complexity of Algorithm 12

This computes all ΠA in O(2|A| × |A|) complexity.

Line #1: The algorithm inputs are the conditioning event A, and the DS-Vector

ΓA[].
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Algorithm 12 Compute all ΠA (O(2|Θ| × |Θ|))
1: procedure AllΠA(Singletons A, DS-Vector ΓA[])
2: for j ← 0, power[|A|]− 1 do
3: ΠA[j]← ΓA[j]
4: end for
5: for J ← 0, |A| − 1 do
6: for t← 0, power[|A| − J ]− 2 step 2 do
7: for s← 0, power|J | − 1 do
8: ΠA[(t + 1) ∗ power[J ] + s] ← ΠA[(t + 1) ∗ power[J ] + s] + ΠA[t ∗
power[J ] + s]

9: end for
10: end for
11: end for
12: Return ΠA[]
13: end procedure

Lines #2-4: The required number of iterations is (2|A|) and the complexity of this

segment is O(2|A|).

Lines #5-11: The outer loop is executed (|A|) times. Lines #6-10: The middle

loop is executed (2|A|−J−1) times. Lines #7-9: The inner loop is executed (2J) times.

Complexity of an access operation is O(1). Thus, the computational complexity of

lines #5-11 is (|A|)(2|A|−J−1) (2J) = O(2|A| × |A|).

Line #12: The algorithm output is ΠA[].

5.1.4 Space Complexity of Algorithm 12

The ΓA[] and ΠA[] vectors in Fig. 5.1 is of size 2|A|. Hence, the space complexity

associated with the above algorithm is O(2|A|).

Note that in DS-Conditional-All model, REGAP (A) captures all propositions

that may contribute to the conditional core FA. REGAP (A) and (REGAP (A)×

REGAP (A)) which is the Cartesian product of REGAP (A) and REGAP (A), cap-



62

ture all propositions whose masses are annulled (as identified by Lemma 1 [85]). See

Fig 5.1.

5.2 Efficient Computation of All DST Condition-

als

In this section, we discuss efficient computation of all DST conditionals using the

— DS-Conditional-All — computational model (See Fig. 5.1). This model can be em-

ployed to compute both the FH and Dempster’s conditional beliefs of all propositions,

as well as to compute Dempster’s conditional masses of all propositions. FH condi-

tional masses of all propositions can be obtained via applying fast Möbius transform

to computed FH conditional beliefs of all propositions.

5.2.1 Computation of the FH Conditional Beliefs of All Propo-

sitions

DS-Conditional-All model provides ΠA(A ∩ B) and Bl(A ∩ B) for all B ⊆ A via

Algorithms 11, and 12. Now use the expressions in Proposition 1 and 2 to obtain

Bl(B|A) as

Bl(B|A) =
Bl(A ∩B)

1− ΠA(A ∩B)
. (5.1)

We may compute all conditional belief values by iterating on the propositions in

REGAP (A) and applying the above equation.
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5.2.2 Computation of the Dempster’s Conditional Beliefs of

All Propositions

As before, we can obtain ΠA(A∩B) and Bl(A∩B) for all B ⊆ A via Algorithms 11,

and 12. Then use the expressions in Proposition 1 and 3 to obtain Bl(B‖A) as

Bl(B‖A) =
Bl(A ∩B) + ΠA(A ∩B)− ΓA({∅})

1− ΓA({∅})
. (5.2)

We can compute all conditional belief values by iterating on the propositions in

REGAP (A) and applying the above equation.

5.2.3 Computation of the FH Conditional Masses of All Propo-

sitions

FH conditional masses of all propositions can be obtained via applying fast Möbius

transform to computed FH conditional beliefs of all propositions. All FH conditional

beliefs can be computed as the discussion in Sec. 5.2.1.

5.2.4 Computation of the Dempster’s Conditional Masses of

All Propositions

We can obtain ΓA(A∩B) for all B ⊆ A via Algorithm 11. Then use the expressions

in Proposition 1 and 4 to obtain m(B‖A) as

m(B‖A) =
m(A ∩B) + ΓA(A ∩B)

1− ΓA({∅})
. (5.3)

All conditional masses are computed by iterating on the propositions in REGAP (A)

and applying the above equation. The computational complexity of iterating over
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REGAP (A) is O(2|A|). m(A ∩ B) can be accessed in O(1). Also after applying

Algorithm 11, we can access ΓA({∅}) in O(1). Thus the computational complexity of

computing all conditional masses is O(2|Θ|).

Computation of the Dempster’s Conditional Mass Using the Special-

ization Matrix. It is noteworthy that [43] and [46] have proposed a matrix calculus

based algorithm for exact computation of Dempster’s conditional masses. It employs

a 2|Θ| × 2|Θ|-sized stochastic matrix SA (with each entry ‘0’ or ‘1’) referred to as

the conditioning specialization matrix and a 2|Θ| × 1-sized vector m(·) containing

the BoE’s focal elements. Then m(·‖A) = SA · m(·) yields Dempster’s condition-

ing masses without normalization. The computational and space complexity of the

specialization matrix multiplication is O(2|Θ| × 2|Θ|), a prohibitive burden even for

modest FoD sizes.

5.3 Experiments

We have developed a novel computation library, which we refer to as DS-CONAC

(DS-Conditional-One and DS-Conditional-All in C++) [67]. This includes the im-

plementation of required data structures and algorithms of proposed computational

models along with simulation tools. All conditional computations for smaller FoDs

were simulated on a Macintosh desktop computer (iMac) running Mac OS X 10.13.4

(with 2.9GHz Intel Core i5 processor and 8GB of 1600MHz DDR3 RAM). Conditional

computations for larger FoDs were done on a supercomputer (http://ccs.miami.

edu/pegasus) (underlined in Table 5.2).

Note that Algorithms 7, 8, and 9 yield all the parameters (viz., Bl(A∩B), Bl(A),

and S(A;A ∩ B)) required for both FH and Dempster’s conditional belief compu-
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tations of an arbitrary proposition. Similarly, Algorithms 11, and 12 yield all the

parameters (viz., Bl(A ∩ B), ΓA({∅}), and ΠA(A ∩ B)) required for both FH and

Dempster’s conditional belief computations of all propositions. Once these quanti-

ties are computed, computational times for both conditional belief computations (FH

and Dempster’s) are similar because the final operations require only a constant time

(see Propositions 1, 2 and 3).

Results were obtained by executing the algorithms for 10000 randomly chosen

conditioning (A) and conditioned (B ⊆ A) propositions from the FoD and noting the

average CPU time. A random set of focal elements were generated in the core for

each FoD size.

With the DS-Conditional-One model (which applies to both FH and Dempster’s

conditionals), we first compute arbitrary conditional beliefs to compute average com-

putational times it takes; we next use a ‘brute force’ approach to compute all the con-

ditional beliefs (i.e., compute the conditional belief of every proposition); we then use

the FMT to get the conditional masses for all the propositions [14,40]. We also com-

pute arbitrary Dempster’s conditional masses to measure the average computational

times. Table 5.1 lists the average computational times taken by the DS-Conditional-

One model.

Table 5.2 lists the average computational times taken by the DS-Conditional-All

model and the specialization matrix based method in [43] and [46].

With the DS-Conditional-All model (which applies to both FH and Dempster’s

conditionals), we compute all the conditional beliefs; we then use the FMT to get

the conditional masses for all the propositions. We also compute all Dempster’s

conditional masses (directly, without FMT) to determine the average computational
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Method → DS-Conditional-One Model

Conditional → FH or Dempster’s Dempster’s

Bl(B|A) Bl(B|A) m(B|A)

FoD or Bl(B‖A) or Bl(B‖A) or m(B‖A) m(B‖A)

|Θ| Max. |F| (Arbitrary) (All) (All) (Arbitrary)

2 3 0.0008 0.0016 0.0024 0.0008

4 15 0.0008 0.0057 0.0068 0.0008

6 63 0.0009 0.0189 0.0208 0.0009

8 255 0.0011 0.0707 0.0758 0.0010

10 1,023 0.0016 0.3038 0.3208 0.0012

12 4,095 0.0033 1.5535 1.6206 0.0016

14 16,383 0.0095 15.0000 17.1429 0.0030

16 65,535 0.0323 131.8750 136.8750 0.0074

18 262,143 0.1223 1,072.2200 1,077.7800 0.0218

20 1,048,575 0.4724 8,670.0000 8,698.0000 0.0771

22 4,194,303 3.1889 71,115.9000 73,942.3000 0.2853

24 16,777,215 18.7807 653,268.0000 660,883.0000 0.6467

26 67,108,863 83.0787 1.6334 cpu hours 1.6915 cpu hours 1.1744

28 268,435,455 338.2960 *** *** 31.2735

30 1,073,741,823 1,509.5000 *** *** 111.2910

Table 5.1: DS-Conditional-One model. Average computational times with DS-
CONAC library (ms) (*** denotes computations not completed within a feasible
time or space requirement).
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Method → DS-Conditional-All Model Specialization Mat.

Conditional → FH or Dempster’s Dempster’s Dempster’s

Bl(B|A) m(B|A)

FoD or Bl(B‖A) or m(B‖A) m(B‖A) m(B‖A)

|Θ| Max. |F| (All) (All) (All) (All)

2 3 0.0011 0.0014 0.0015 0.0015

4 15 0.0014 0.0018 0.0020 0.0070

6 63 0.0026 0.0034 0.0031 0.0767

8 255 0.0067 0.0091 0.0054 1.1264

10 1,023 0.0211 0.0303 0.0135 98.4795

12 4,095 0.0770 0.1133 0.0427 1,581.8300

14 16,383 0.2950 0.4378 0.1532 24,847.0000

16 65,535 1.1592 1.7243 0.5814 396,860.0000

18 262,143 6.5901 9.2096 2.3430 1.7637 cpu hours

20 1,048,575 26.7221 39.0397 9.3537 ***

22 4,194,303 112.4180 166.0070 43.5348 ***

24 16,777,215 500.3420 689.8700 233.6080 ***

26 67,108,863 2,239.2400 2,908.7000 1,118.9500 ***

28 268,435,455 9,273.8100 12,406.4000 4,976.9700 ***

30 1,073,741,823 42,087.2000 52,055.8000 25,354.9000 ***

Table 5.2: DS-Conditional-All model versus specialization matrix based method. Av-
erage computational times (ms) (*** denotes computations not completed within a
feasible time or space requirement).
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times it takes. The specialization matrix based method (which applies to the Demp-

ster’s conditional only) yields the conditional masses of all propositions, but the

time taken already far exceeds what the DS-Conditional-One model as well as the

DS-Conditional-All model takes (even including the FMT). So we did not compute

the conditional beliefs with the specialization matrix based method (which would

have required the FMT). The DS-Conditional-All model provide better results for

conditional computations of all propositions than the DS-Conditional-One model.

Method → DS-Conditional-One and All Specialization Mat.

Conditional → FH or

Dempster’s Dempster’s Dempster’s Dempster’s

Bl(B|A) or

FoD m(B‖A) Bl(B‖A) m(B‖A) m(B‖A)

|Θ| Max. |F| (Arbitrary) (Arbitrary) (All) (All)

2 3 0.0003 0.0004 0.0005 0.0008

4 15 0.0004 0.0004 0.0007 0.0128

6 63 0.0004 0.0006 0.0017 0.2048

8 255 0.0006 0.0009 0.0058 3.2768

10 1023 0.0010 0.0017 0.0218 52.4288

12 4095 0.0021 0.0042 0.0737 838.8608

14 16383 0.0054 0.0120 0.2755 13421.7728

16 65535 0.0145 0.0413 1.0831 214748.3648

18 262143 0.0440 0.1558 4.4525 0.95 cpu hours

20 1048575 0.1509 0.6129 18.2815 15.27 cpu hours*

22 4194303 3.1688 6.6125 369.7840 244.33 cpu hours*

24 16777215 10.8877 28.2246 1546.8100 3909.37 cpu hours*

26 67108863 40.1846 125.2820 6440.7600 7.14 cpu years*

28 268435455 132.3020 496.1380 25180.4000 114.24 cpu years*

30 1073741823 463.2340 2329.1100 101009.0000 1827.94 cpu years*

Table 5.3: DS-Conditional-One model and DS-Conditional-All model versus special-
ization matrix based method. Theoretical computational times (ms) (* denotes that
computation becomes prohibitive exceeding the memory limit and could not be com-
pleted within a feasible time).
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The significant speed advantage offered by the proposed computational models

over the specialization matrix based approach is evident from Table 5.1 and Table 5.2.

For larger FoDs, the computational burden associated with the specialization matrix

based approach becomes prohibitive because of its time complexity as well as the

space complexity (O(2|Θ| × 2|Θ|)). For example, an FoD of size 22 would need 2 (=

222×222/8) TB of memory to represent the specialization matrix, if each matrix entry

occupies only 1 bit. This is a prohibitive space requirement for practical applications.

For large FoDs, the computational time requirement of specialization matrix based

approach rapidly becomes infeasible. This is clearly evident from Table 5.3.

.

Figure 5.2: Time and space complexity comparison of DS-Conditional-One (or DS-
Conditional-All) model with the specialization matrix approach (Theoretical com-
putational times are calculated assuming 10,000,000 computational iterations per
second).
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With increasing FoD size, the computational time requirements of the DS-Conditional-

One and DS-Conditional-All models are significantly less compared to what the spe-

cialization matrix based approach requires. Fig. 5.2 illustrates the computational and

space complexity comparison of DS-Conditional-One (or DS-Conditional-All) model

with the specialization matrix approach.

(a) |Θ| = 10 (b) |Θ| = 20 (c) |Θ| = 30

Figure 5.3: Variation of CPU time for arbitrary FH (Dempster’s) belief conditional
computation versus |A| for different |B| values (when |Θ| = 10, |Θ| = 20, and |Θ| =
30).

Figs 5.3(a), 5.3(b), and 5.3(c) show the variation of CPU time for FH conditional

computation versus |A| for different |B| values. Experiments of the FoD size of 10

and 20 were simulated on the desktop computer and FoD size of 30 were completed on

the supercomputer. The results were obtained by executing the algorithms for 1000

randomly chosen B propositions and noting the average CPU time. The experiment

was repeated for different FoD sizes |Θ| and the cardinality |A| of the conditioning

proposition. A random set of focal elements were generated as the core for each BoE

generated.
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With increasing size of |A|, the average computational time of a randomly chosen

belief function decreases. Computational time increases with increasing size of |B|.

Computational time resolution is 1 µs in the desktop computer and it is 10 ms in

the supercomputer. Due to this reduced sensitivity of the supercomputer to smaller

computational times, when |A| > 22, |B| = 4 and |B| = 8, an artifact is observed in

the plot (Fig. 5.3(c)).

5.4 Concluding Remarks

This chapter provides a scalable, generalized framework for efficient and exact

computation of DST conditionals. The DS-Conditional-All model that we propose

can also serve as a tool for visualization and advanced analysis of the conditional

computation process. We believe that the computational framework that we have

developed establishes a significant step forward in harnessing the strengths of DST

methods in practical applications.

By carefully reducing the number of operations being executed, the proposed

approach takes significantly less computational and space complexity when compared

with other approaches for conditional computation.

(a) A smaller matrix is used (only the BoE itself).

(b) Matrix multiplications are avoided (only element additions are involved which

are computationally less expensive than multiplications).

(c) Algorithms are developed avoiding repetitive computations.

(d) Access operation of a focal element takes only constant time.

For both Fagin-Halpern and Dempster’s conditionals, this framework provides al-

gorithms to compute arbitrary conditional belief (See Chapter 4) in O(2|A| × 2|A∩B|)
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Figure 5.4: Illustration of the best use of DST conditional computation models.

(≤ O(2|Θ|) ) and all conditional beliefs in O(max(2|A| × |A|, 2|Θ|)) (≤ O(2|Θ| × |Θ|)).

It also provides algorithms to compute arbitrary Dempster’s conditional mass in

O(max(2|A|, |A∩B|)) (≤ O(2|Θ|) ), and all Dempster’s conditional masses in O(2|Θ|).

Therefore the novel contributions in this work provide a seminal advancement in

comparison with the well known specialization matrix approach [46] for Demspter’s

conditional and Conditional Core Theorem approach [59] for Fagin-Halpern condi-

tional, which lead to the computational complexity of O(2|Θ| × 2|Θ|). As a clear

example, when we consider an FoD of size 30 (∼1 billion focal elements) the pro-

posed framework can be used to compute all conditional masses o beliefs within 1

minute while the specialization matrix will take more than 1800 cpu years. The space

complexity of these algorithms is O(2|Θ|), a promising improvement in contrast to the

prohibitive O(2|Θ| × 2|Θ|) space complexity of the specialization matrix approach.
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Computational time of an arbitrary conditional belief depends only on the size

|B| of the conditioned event and the size |A| of the complement of conditioning event.

When we increase the cardinality |A| of the conditioning event while keeping the same

FoD size |Θ|, the computational time decreases.

Another advantage of the proposed approach is that it can be utilized for either the

FH conditional or Dempster’s conditional belief computations. An outcome of this

research is the DS-CONAC library (in C++) which is available at [67]. We expect

that this library will be useful for practical application of DST methods. This novel

computational framework will be useful for a significant performance improvement in

real-time evidence fusion and uncertainty reasoning applications as well as advanced

applications using dynamic FoDs, dynamic BoEs and multiple BoEs.



CHAPTER 6

Operations on Dynamic Frames

This chapter provides algorithms to work with dynamic FoDs. In an application

that uses a large frame and works for a longer duration, the existing discernible infor-

mation may vary. A greater possibility is there to dynamically change the presence

of existing singletons in the FoD. Removing one singleton from a frame will remove

half of the proposition from the BoE. Thus, in comparison with the static frames in

practice, keeping the ability of adding, removing and changing singletons to maintain

the smallest possible frame is highly important to improve the performance [86].

This chapter is organized as follows: Section 6.1 provides algorithms to add a new

singleton to a frame; Section 6.2 includes algorithms to remove a singleton from a

frame; Section 6.3 contains the concluding remarks and future directions.

6.1 Adding a Singleton to a Frame

According to the Fig. 3.1, when a new singleton is added, all the new focal elements

relevant to it are generated by adding the singleton proposition to all the existing focal

elements. This can be implemented using a DS-Vector, DS-Matrix or a DS-Tree.
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6.1.1 DS-Vector

Illustration in the Fig. 3.2 provides a visualization of a dynamic BoE. According

to the figure, consider adding {θ2} when {θ0} and {θ1} are present in the FoD. It

generates {θ2}, {θ0θ2}, {θ1θ2} and {θ0θ1θ2} focal elements. Algorithm 13 provides an

implementation of adding focal elements of a new singleton.

Algorithm 13 Adding focal elements of a singleton in a DS-Vector

1: procedure AddFocalEle(Singletons Θ, Singleton θ, Normalize Nlz)
2: add θ to Θ
3: resize DS-Vector to power[|Θ|]
4: for i← power[|Θ| − 1], power[|Θ|]− 1 do
5: read potential[i]
6: Nlz ← Nlz + potential[i]
7: end for
8: end procedure

The important steps in this algorithm are as follows:

Line #1: Input parameters are FoD; Θ, new singleton θ and normalizing constant

Nlz. Normalizing constant is the summation of all the belief potential values.

Line #4-7: Adding the potentials of new focal elements relevant to the new sin-

gleton and updating the normalizing constant.

6.1.2 DS-Matrix

Fig. 3.3 provides a representation of a dynamic BoE. According to the figure,

consider adding {θ2} when {θ0} and {θ1} are present in the FoD. It generates {θ2},

{θ0θ2}, {θ1θ2} and {θ0θ1θ2} focal elements.

Algorithm :14 provides an implementation of adding focal elements of a new sin-

gleton.
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Algorithm 14 Adding focal elements of a singleton in a DS-Matrix

1: procedure AddFocalEle(EvenSingletons Θe, OddSingletons Θo, Singleton θ,
Normalize Nlz)

2: if |Θo| ≤ |Θe| then
3: add θ to Θo

4: resize potential to power[|Θo|]
5: for i← power[|Θo| − 1], power[|Θo|]− 1 do
6: for j ← 0, power[|Θe|]− 1 do
7: read potential[i][j]
8: Nlz ← Nlz + potential[i][j]
9: end for

10: end for
11: else
12: add θ to Θe

13: for i← 0, power[|Θo|]− 1 do
14: resize potential[i] to power[|Θe|]
15: for j ← power[|Θe| − 1], power[|Θe|]− 1 do
16: read potential[i][j]
17: Nlz ← Nlz + potential[i][j]
18: end for
19: end for
20: end if
21: end procedure
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Line #1: Input parameters are even singletons; Θe, odd singletons; Θo, new

singleton θ and normalizing constant Nlz. Normalizing constant is the summation of

all the belief potential values.

Line #2-10: Adding the potentials of new focal elements relevant to new odd

singleton and updating the normalizing constant.

Line #11-20: Adding the potentials of new focal elements relevant to new even

singleton and updating the normalizing constant.

6.1.3 DS-Tree

Illustration in the Fig. 3.4 provides a balanced binary tree representation of a

dynamic BoE. According to the figure, consider adding {θ2} when {θ0} and {θ1}

are present in the FoD. It generates {θ2}, {θ0θ2}, {θ1θ2} and {θ0θ1θ2} focal elements.

Algorithm 15 provides an implementation of adding focal elements of a new singleton.

Salient steps of the algorithm are as follows:

Line #1: In this algorithm, input parameters are singletons; Θ, new singleton θ,

DSTree T and normalizing constant Nlz. Normalizing constant is the summation of

all the belief potential values.

Line #4-7: Creating the new root node and updating the tree.

Line #9-11: Adding the first element of the right sub-tree.

Line #12: Adding the remaining elements of the right sub-tree.

Line #15-26: Procedure for adding the elements of a sub-tree.
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Algorithm 15 Adding focal elements of a singleton in a DS-Tree

1: procedure AddFocalEle(Singletons Θ, Singleton θ, DSTree T , Normalize
Nlz)

2: add θ to Θ
3: level ← |Θ| − 1
4: create node
5: Nlz ← Nlz + node.mass
6: node.left← T.root
7: T.root← node
8: if level > 0 then
9: create node

10: Nlz ← Nlz + node.mass
11: T.root.right← node
12: AddSubTree(root.right, level − 1)
13: end if
14: end procedure
15: procedure AddSubTree(Node leaf , Level level)
16: if level > 0 then
17: create node
18: Nlz ← Nlz + node.mass
19: leaf.left← node
20: AddSubTree(leaf.left, level − 1)
21: create node
22: Nlz ← Nlz + node.mass
23: leaf.right← node
24: AddSubTree(leaf.right, level − 1)
25: end if
26: end procedure
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6.2 Removing a Singleton from a Frame

Removing one singleton on an FoD will remove half of the elements of the BoE.

So keeping the minimum possible elements in the BoE significantly improves the

performance. The following discussion is on removing the focal elements relevant to

a singleton on a DS-Vector, DS-Matrix or a DS-Tree.

6.2.1 DS-Vector

Figure 6.1: Removing focal elements of a singleton in a DS-Vector

Illustration in the Fig. 6.1 provides a visualization of removing focal elements

relevant to the singleton {θ1}. According to the figure, it removes {θ1} and the

next element {θ0θ1}, and also last two elements {θ1θ2} and {θ0θ1θ2}. Algorithm :16

provides an implementation of removing focal elements relevant to a singleton.

The important steps in this algorithm are as follows:

Line #1: Input parameters are FoD; Θ, removing singleton θn and normalizing

constant Nlz. Normalizing constant is the summation of all the belief potential

values.
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Algorithm 16 Removing focal elements of a singleton in a DS-Vector

1: procedure RemoveFocalEle(Singletons Θ, Singleton θn, Normalize Nlz)
2: start← 1
3: while power[n] ∗ 2 ∗ start ≤ power[|Θ|] do
4: for i← power[n] ∗ (2 ∗ start− 1), power[n] ∗ 2 ∗ start− 1 do
5: Nlz ← Nlz − focalelement[i]
6: end for
7: if start > 1 then
8: copy(focalelement.begin() + power[n] ∗ 2 ∗ (start − 1),
focalelement.begin()+power[n]∗2∗(start−1)+power[n], focalelement.begin()+
power[n] ∗ (start− 1))

9: end if
10: start← start+ 1
11: end while
12: remove θn from Θ
13: resize focalelement to power[|Θ|]
14: end procedure

Line #3: Iterating through removing focal element segments.

Line #4-6: Removing potentials relevant to the removing singleton and updating

the normalizing constant.

Line #7-9: Replace the memory segment of the removed potentials by the next

available focal element segment.

Line #12-13: remove θn from FoD; Θ and resizing the DS-Vector.

6.2.2 DS-Matrix

Fig. 6.2 provides a representation of removing focal elements relevant to the single-

ton θ0. It removes the 1st and 3rd columns of focal elements and leaves focal elements

relevant to θ1, θ2 and θ3. Algorithm 17 provides an implementation of removing focal

elements relevant to a singleton.

The important steps in this algorithm are as follows:



81

Algorithm 17 Removing focal elements of a singleton in a DS-Matrix

1: procedure RemoveFocalEle(EvenSingletons Θe, OddSingletons Θo, Single-
ton θn, Normalize Nlz)

2: if θn in Θo then
3: while power[n] ∗ 2 ∗ start ≤ power[|Θo|] do
4: for i← 0, power[|Θe|]− 1 do
5: for j ← power[n] ∗ (2 ∗ start− 1), power[n] ∗ 2 ∗ start− 1 do
6: Nlz ← Nlz − focalelement[i][j]
7: end for
8: if start > 1 then
9: copy(focalelement[i].begin() + power[n] ∗ 2 ∗ (start − 1),
focalelement[i].begin() + power[n] ∗ 2 ∗ (start − 1) + power[n],
focalelement[i].begin() + power[n] ∗ (start− 1))

10: end if
11: end for
12: start← start+ 1
13: end while
14: remove θn from Θo

15: for i← 0, power[|Θe|]− 1 do
16: resize focalelement[i] to power[|Θo|]
17: end for
18: else if θn in Θe then
19: while power[n] ∗ 2 ∗ start ≤ power[|Θe|] do
20: for j ← 0, power[|Θe|]− 1 do
21: for i← power[n] ∗ (2 ∗ start− 1), power[n] ∗ 2 ∗ start− 1 do
22: Nlz ← Nlz − focalelement[i][j]
23: end for
24: if start > 1 then
25: count← 0
26: for i ← power[n] ∗ 2 ∗ (start − 1), power[n] ∗ 2 ∗ (start − 1) +

power[n]− 1 do
27: focalelement[count + power[n] ∗ (start − 1)][j] ←

focalelement[i][j]
28: count← count+ 1
29: end for
30: end if
31: end for
32: start← start+ 1
33: end while
34: remove θn from Θe

35: resize focalelement to power[|Θe|]
36: end if
37: end procedure



82

Figure 6.2: Removing focal elements of a singleton in a DS-Matrix

Line #1: Input parameters are even singletons; Θe, odd singletons; Θo, removing

singleton θn and normalizing constant Nlz. Normalizing constant is the summation

of all the belief potential values.

Line #2-17: If θn is an odd singleton, executing row operations.

Line #18-36: If θn is an even singleton, executing column operations.

Line #3: Iterating through removing focal element segments.

Line #14-16: remove θn from Θo and removing unused rows.

Line #34-35: remove θn from Θe and removing unused columns.

6.2.3 DS-Tree

Fig. 6.3 provides a representation of removing focal elements relevant to the sin-

gleton θ2. It removes sub branches represent by green dotted lines and leaves focal

elements relevant to θ0, θ1 and θ3. Algorithm :18 provides an implementation of

removing focal elements relevant to a singleton.
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Algorithm 18 Removing focal elements of a singleton in DS-Tree

1: procedure DeleteSubTree(Node leaf)
2: Nz ← 0
3: if leaf.left then
4: Nz ← Nz+ DeleteSubTree(leaf.left)
5: end if
6: if leaf.right then
7: Nz ← Nz+ DeleteSubTree(leaf.left)
8: end if
9: if leaf then

10: Nz ← Nz + leaf.mass
11: delete leaf
12: end if
13: Return Nz
14: end procedure
15: procedure RemoveSubTrees(DSTree T , Node leaf , Step step, Node parent,

bool atroot, bool leftchild)
16: if step = 0 then
17: if atroot then
18: T.root← leaf.left
19: else
20: if leftchild then
21: parent.left← leaf.left
22: else
23: parent.right← leaf.left
24: end if
25: end if
26: T.Nlz ← T.Nlz− DeleteSubTree(leaf.right)
27: T.Nlz ← T.Nlz − leaf.mass
28: delete leaf
29: else
30: RemoveSubTrees(T , leaf.left, step− 1, leaf , false, true)
31: RemoveSubTrees(T , leaf.right, step− 1, leaf , false, false)
32: end if
33: end procedure
34: procedure RemoveFocalEle(Singletons Θ, Singleton θn, DSTree T )
35: RemoveSubTrees(T , T.root, |Θ| − n, null, true, true)
36: remove θn from Θ
37: end procedure
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Figure 6.3: Removing focal elements of a singleton in a DS-Tree

Salient steps of the algorithm are as follows:

Line #1: Procedure to traverse a removing sub tree.

Ling #15: Procedure to make recursive call to removing sub trees.

Line #34: In this algorithm, input parameters are singletons; Θ, removing single-

ton θn, DSTree T .

6.3 Concluding Remarks

This chapter provides a general framework along with data structures and algo-

rithms to work with dynamic FoDs. The data structures DS-Vector, DS-Matrix and

DS-Tree can also be utilized as tools to visualize dynamic operations. Removing one

singleton from a frame removes half of the propositions that need to be considered.

Thus, from the computational perspective, incorporating the ability to add and re-

move singletons from a frame is highly important for enhanced resource utilization.

We are conducting a wide range of experiments with the topics discussed in Chapter

7. The visualization tools that we are developing in Section 7.4 will be useful to

further optimize the dynamic operations.



CHAPTER 7

Future Work

This chapter provides a discussion of our future work.

This chapter is organized as follows: Section 7.1 efficient computation of DST

fusion strategies; Section 7.2 computations on low density BoEs; Section 7.3 baseline

network selection in InSAR; Section 7.4 effective visualizations; Section 7.5 compu-

tational libraries.

7.1 DST Fusion Strategies

7.1.1 Dempster’s Rule of Combination

The combination operation plays an important role in DST applications for evi-

dence fusion [87]. Among these various evidence combination notions that have been

proposed over the years [11, 18], perhaps the most widely used DST combination is

the Dempster’s rule of Combination [12].
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7.1.1.1 Arbitrary Computations

We can develop an efficient algorithm to compute arbitrary combination compu-

tations. Fig. 7.1 visualizes the Dempster’s rule of combination propositions. Fig. 7.2

represents proposition of a conjunctive combination operation.

7.1.1.2 Visualizing Conflicts, Addressing Limits

Fig. 7.3 visualizes a conflict [88] of a Dempster’s Rule of Combination Operation.

We can create a new combination rule to address these limitations.

X

X X

X X

X X X X

X X

X X X X

X X X X

X X X X X X X X

Figure 7.1: Visualizing the Dempster’s
rule of combination for 2 BoEs.

X

Figure 7.2: Visualizing a conjunctive com-
bination for 2 BoEs.

7.1.1.3 Generalized Algorithm for Multiple BoEs

Fig. 7.4 provides a 3D visualization of Dempster’s rule of combination operation.

We can develop generalized arbitrary computational algorithms to work with any

number of BoEs by analyzing its properties.
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Figure 7.3: Visualizing a conflict of a Demp-
ster’s rule of combination Operation.
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Figure 7.4: 3D Visualization of a
Dempster’s rule of combination for
3 BoEs.

7.1.2 Conditional Update Equation (CUE), Conditional Fu-

sion Equation (CFE) and Pignistic Transformation

Our current work involves developing efficient algorithms for the following DST

fusion strategies:

• Conditional Update Equation (CUE) [47].

• Conditional Fusion Equation (CFE) [68].

• Pignistic transformation [16,69,70].

We are also conducting a wide range of experiments with dynamic operations to

improve and conclude the work discussed in Chapter 6.
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7.2 Efficient Computations on Low Density BoEs

The current work that is being carried out includes developing efficient algorithms

and data structures to work with general low density BoEs.

We are developing efficient algorithms for the following categories:

• Dirichlet belief functions [71,72].

• Consonant belief functions [14].

• Single focal element (SFE) BoEs.

• Other low density BoEs.

7.3 Baseline Network Selection in Interferometric

Synthetic Aperture Radar (InSAR)

Synthetic aperture radar (SAR) interferometry (InSAR) [73] is an important tech-

nique to estimate the land surface deformation caused by natural and anthropogenic

processes including earthquakes, volcanic eruptions, landslides, and hydrological sub-

sidence [74–79]. SAR images are generated by processing (satellite) radar data. Each

image produces amplitude and phase for a given area. InSAR exploits the difference

of pairs of SAR images in order to extract signals of subsidence or uplifting in an area

of interest.
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7.3.1 InSAR Processing

Interferometry uses two SAR images of the same area taken from the same position

and finds the difference in phase between them, producing an image known as an

interferogram [73]. The satellites must be as close as possible to the same spatial

position when the SAR images are collected. This means that images from two

satellite platforms with different orbits cannot be compared, and for a given satellite,

data from the same orbital track must be used. The perpendicular distance between

them is known as the baseline. We can represent SAR images on a network by having

time on the x-axis and perpendicular baseline on the y-axis [89]. The time axis

accounts for the time that has elapsed since the first SAR was acquired while the

y axis accounts for the difference in perpendicular baseline relative to the first SAR

collection in the sequence [90]. This network is referred to as a baseline network.

Selected interferograms can be represented as edges in a baseline network.

7.3.1.1 Challenge

Selecting the best baseline network is still an open challenge. Current network

selection criterion removes the interferograms based on a predefined minimum base-

line perpendicular distance and predefined time duration. However quality of the

final output changes even after that. Then it is required to get a fresh start to the

processing again by changing the baseline network. Selecting the best baseline net-

work before the start of InSAR processing is greatly beneficial to optimize the InSAR

processing work.
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7.3.1.2 Approach

First, we completed a study on baseline network selection using network central-

ity concepts [80]. Then, we developed a deep learning model to select good networks

based on expert opinions. The remaining work is, developing baseline network selec-

tion criterion to work with imperfect data by incorporating a wide range of uncer-

tainties.

7.3.2 Improvements Using Network Centrality Concepts

We have analyzed and compared the optimization of InSAR baseline network

selection process by applying different centrality methods [80]. We have conducted

the study with degree centrality, eigenvector centrality, Katz centrality, page-rank

centrality, authority+hub centrality, closeness centrality, betweenness centrality and

flow-betweenness centrality. Temporal coherence [91] is the measurement we have

used to measure the quality, however thoughtful discussion is still needed to select

the appropriate measurement. The coherence value ranges from 0 (the interferometric

phase is just noise) to 1 (complete absence of phase noise). The main focus was to

design and optimize the network by keeping the highest possible temporal coherence.

We conducted the experiment with several network formations. Flow-betweenness

centrality gave significantly improved results.

7.3.2.1 Data Set

Heroica Nogales, more commonly known as Nogales, is a city and the county seat

of the Municipality of Nogales. It is located on the northern border of the Mexican

state of Sonora. This is a well-known area for a lot of tunnel constructions and
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activities. The SAR acquisition covers this geographical area. A data set of 50 SAR

images from December 16, 2009, to January 25, 2012 was used to generate relevant

outcomes of this study. The Initial network contained 225 interferograms.

7.3.2.2 Improvements from Flow-betweenness Centrality

Flow-betweenness [80] is measuring the betweenness of vertices in a network in

which a maximal amount of information is continuously pumped between all sources

and targets. Flow-betweenness takes account of more than just the geodesic paths

between vertices, since flow can go along non-geodesic paths as well as geodesic ones.

Suppose ñ
(i)
kl denotes the amount of flow thorough vertex #i when a maximum

flow is transmitted from vertex #l to #k. Then flow betweenness centrality of vertex

#i is

Xi =
∑
k,l

ñ
(i)
kl

gkl
, (7.1)

where gkl denotes the total # of geodesic paths between vertex #k and vertex #l.

Here, we use the convention
ñ
(i)
kl

gkl
= 0, whenever both ñ

(i)
kl and glk are zero.

Flow-betweenness centrality measures were calculated in each and every nodes

of the data set. The least important nodes according to flow-betweenness centrality

measures were obtained by arranging the relevant values of all the nodes in ascending

order. Table: 7.1 contains the relevant nodes with respective centrality measures.

Fig. 7.5-(a), Fig. 7.5-(e), and Fig. 7.5-(i) are the initial network of baseline history,

network of interferograms, and the map of temporal coherence of the data set, respec-

tively. Fig. 7.5-(b), Fig. 7.5-(f), and Fig. 7.5-(j) are obtained by removing the least

important 2 nodes according to the flow-betweenness centrality. Likewise, Fig. 7.5-
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Bottom rank Node Flow-betweenness centrality value
1 100804 68
2 100815 91
3 100702 126
4 100220 127
5 100906 127
6 100621 130
7 91216 132
8 100303 134
9 100724 139
10 101009 139

Table 7.1: The least important nodes according to flow-betweenness centrality.

Figure 7.5: Comparison of flow-betweenness centrality corrections. (a)-(d) Network of
baseline history. (e)-(h) Network of interferograms. (i)-(l) Map of temporal coherence.
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(c), Fig. 7.5-(g), Fig. 7.5-(k) are plotted by removing the least important 5 nodes and

Fig. 7.5-(d), Fig. 7.5-(h), Fig. 7.5-(l) are generated by removing the least important

10 nodes.

Comparing the temporal coherence maps in Fig. 7.5, it is clear that removing the

least important nodes using flow-betweenness not only optimizes, but also increases

the temporal coherence and quality of the results. Analyzing the temporal coherence

maps of Fig. 7.6 it is evident that removing 5 nodes using betweenness centrality

measure provides the initial temporal coherence. However, Temporal coherence was

reduced when removing 2, and 10 nodes.

Figure 7.6: Comparison of betweenness centrality corrections. (a)-(d) Network of
baseline history. (e)-(h) Network of interferograms. (i)-(l) Map of temporal coherence.

In this experiment; degree, eigenvector, Katz, page-rank, authority+hub, and

closeness centralities did not contribute to any critical result.
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The main objective of this study was to find better network selection criteria to

improve the process efficiency. According to the results, the main objective is almost

achieved. However, selection of the most appropriate network quality measurement

or collection of measurements is a topic that is still under discussion.

7.3.2.3 A Deep Learning Model to Measure Network Quality Based on

Expert Opinions

Deep learning is a process of training a neural network to achieve a specific task.

We have developed an artificial intelligence (AI) prototype using deep learning [81]

to measure the quality of networks. It gave an impressive 99.3% accuracy. We have

used TensorFlow [92], pandas [93], SciPy [94] and Scikit-learn [95] libraries, in the

development. The prototype was developed using Python and the synthetic data

generator was developed in C++.

Our objective was to create an AI model to measure the quality of networks. Lets

consider the below example:

We have selected 10 nodes (lets consider them as SAR images), then divided the

nodes into two groups: 5 green, and 5 blue as shown in Fig. 7.7. We have created a

deep neural network with three hidden layers: 1000 nodes in the first hidden layer;

2000 nodes in the second hidden layer; and 1000 nodes in the third hidden layer.

The learning rate used was 0.001 and 1000 training epochs were conducted during

the training phase. We created 1200 synthetic networks for the selected 10 nodes

(see Fig. 7.7). We can assign +1 to the edges between the same color nodes and -1

otherwise (lets consider them as the quality of interferograms). Then we can add the

edge values to get a final value for the network. Fig. 7.7 contains 6 networks with
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Figure 7.7: Six Networks out of 1200 used to train and test the AI prototype of
network quality measurement. Each network contains 5 blue and 5 green nodes. The
value of the edges between the same color nodes is +1 and otherwise -1.
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values assigned. Node colors as well as the individual edge values should be hidden to

the prototype. Adjacency matrix of generated networks is the input and the quality

measurement is the output. We have used 1000 networks as training data and 200

networks as testing data. The trained AI prototype gave 99.3% accuracy.

Expert opinion about the network can be used to train and test the prototype.

In InSAR processing, experts can get an idea about the quality of interferograms by

carefully observing the processed data. With a large collection of baseline networks

with accurate quality values assigned, it is possible to create a deep neural network

model to measure the quality of new baseline networks. To accommodate real data

it is required to model with uncertainties.

7.4 Effective Visualizations

A review of current DST contributions [11,18,25] reveal that more work is needed

in the fields of combinatorics, discrete and computational geometry. Evaluating large

flows of data in an appealing way just by using a fundamental numerical format is

almost impossible. It is challenging for scientists to quantitatively examine the non-

deterministic polynomial-time hardness (NP-hard) problems associated with large

FoDs. Investigating the qualitative nature of DST computations become even more

challenging. Visualization can assist the scientist in several ways. Changes in param-

eters can be readily grasped, patterns and classifications become more visible and

anomalies in the data can be easily detected. Therefore, the ability to visualize com-

plex DST computations and simulations is absolutely essential to reinforce cognition,

decision making, and reasoning [60,61].



97

The DS-LASIC, DS-TRISEV proposed in this chapter are valuable tools for en-

hanced visual representations. Current work involves creating an effective visual-

ization framework to assist scientists working on reasoning under uncertainty. This

would be of great value for interactive teaching and learning sessions.

7.4.1 Representation of Dynamic BoEs using Venn Diagrams

Venn diagrams were conceived by John Venn [82], but the roots of these type of

diagrams go back further in history. [96] provides an excellent survey of work in Venn

diagrams including the open problems.

Figure 7.8: Representation of a dynamic
BoE as a 3-set symmetric Venn diagram
when Θ = {θ0, θ1, θ2}, and |Θ| = 3.

Figure 7.9: Representation of a dynamic
BoE as a 4-set Venn diagram using ellipses
when Θ = {θ0, θ1, θ2, θ3}, and |Θ| = 4.

The classic three circle Venn diagram [82] is monotone, simple, and has polar

symmetry. A dynamic BoE of an FoD of size 3 can be represented as in Fig. 7.8. In

geometry, a polygon P in a plane is called monotone with respect to a straight line

L, if every line orthogonal to L intersects P at most twice. A simple Venn diagram is
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one in which no more than two curves intersect at a common point. They are easiest

to draw and understand. The Fig. 7.9 represents a dynamic BoE of an FoD of size 4

using a Venn diagram of 4 ellipses, originally found by Venn [82].

Figure 7.10: Representation of a dynamic
BoE as a 6-set Venn diagram when Θ =
{θ0, θ1, θ2, θ3, θ4, θ5}, and |Θ| = 6.

Figure 7.11: Representation of a dynamic
BoE as a 6-set Edwards-Venn diagram
when Θ = {θ0, θ1, θ2, θ3, θ4, θ5}, and |Θ| =
6.

Venn’s construction, outlined in [82] explained the existence of Venn diagram for

all the sizes. In the Fig. 7.10 red, green and blue shapes added after initial three

circle. It should be clear where the next curve would be drawn. Edwards developed

another general inductive construction that has several characteristics including some

symmetry [97]. It starts with two perpendicular lines, next a circle is added. Succes-

sive curves will be weaving back and forth along the circle. In addition to the above

discussion several constructions were published [98, 99]. Figs. 7.10 and 7.11 can be

used to represent a dynamic BoE of an FoD of size 6. Using Venn’s and Edwards con-

structions it is possible to represent dynamic BoEs for other FoD sizes too. However



99

since they lack polar symmetry, visualization becomes complex for representation of

DST computational operations.

Figure 7.12: Representation of a dy-
namic BoE as a 5-set Venn diagram us-
ing congruent ellipses in a 5-fold rota-
tionally symmetrical arrangement, when
Θ = {θ0, θ1, θ2, θ3, θ4}, and |Θ| = 5.

Figure 7.13: Representation of a dynamic
BoE as a 6-set Venn diagram using trian-
gles when Θ = {θ0, θ1, θ2, θ3, θ4, θ5}, and
|Θ| = 6.

There is a simple symmetric 5-set Venn diagram in which each curve is a triangle

[100]. There was an open question about a 6-set Venn diagram made of triangles [101].

This question was solved by Carroll [102], which can be used to represent a dynamic

BoE of an FoD of size 6. See Fig. 7.13.

From a computational perspective, the ability to represent dynamic BoEs with

a symmetrical or recursive approach is highly valuable to analyze computational

operations on larger FoDs. Fig. 7.12 represents a dynamic BoE as a 5-set Venn

diagram using congruent ellipses in a 5-fold rotationally symmetrical arrangement.

This simple ellipse diagram is the only simple symmetric Venn diagram for 5-set

representation, which was constructed by Grünbaum [103]. Referring to the 7-set



100

representations, Grünbaum’s 7-set non-monotone simple symmetric Venn diagram is

a noticeable work [100]. It can be used to represent a dynamic BoE of an FoD of size

7 as in Fig. 7.14.

Figure 7.14: Representation of a dy-
namic BoE as a 7-set non-monotone sim-
ple symmetric Venn diagram when Θ =
{θ0, θ1, θ2, θ3, θ4, θ5, θ6}, and |Θ| = 7.

Figure 7.15: Representation of a
dynamic BoE as a 11-set sym-
metric Venn diagram when Θ =
{θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10},
and |Θ| = 11.

The first symmetric Venn diagram for a 11-set representation was constructed by

Hamburger [104]. It can be used to represent a dynamic BoE of an FoD of size of 11.

See Fig. 7.15. The diagram is highly non-simple and there is still no simple symmetric

11-Venn diagram discovered. There are a lot of open problems to solve [96]. However

it will be a highly challenging task to represent large FoDs using Venn diagrams.

There are no simple symmetric Venn diagrams for set sizes above 7. To provoke

deeper insights on DST computations and to make computational optimizations, a

flexible visualization framework is greatly valuable.
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7.4.2 Effective DST Visualizations

A countable set is a set with the same cardinality as some subset of the set of

natural numbers. A countable set is either a finite set or a countably infinite set. The

elements of a countable set are enumerable, which is the key to achieve computability.

As discussed in Section 3.1 and 3.2 DS-Vector (Fig. 3.2), DS-Matrix (Fig. 3.3),

DS-Tree (Fig. 3.4) can be effectively utilized to analyze DST Computations.

Fig. 3.5 illustrates a belief computation. It would be clear from the figure that

the computational time of belief computations depends only on the cardinality of the

belief proposition, and not on the cardinality of the complete BoE. The overlapped

region of the Fig. 3.6 illustrates propositions relevant to a plausibility computation.

Figure 7.16: DS-LASIC Diagram:
Representation of a dynamic BoE (a DS-
Tree) as a layered symmetric cluster-
ing diagram when Θ = {θ0, θ1, θ2, θ3, θ4,
θ5, θ6, θ7, θ8}, and |Θ| = 9, here proposi-
tion {θ0} is the root node.

Figure 7.17: DS-TRISEV Model: 3D
representation of a dynamic BoE (a DS-
Tree) using spring electrical model when
Θ = {θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8}, and
|Θ| = 9.
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7.4.2.1 DS-LASIC (DS-Layered Symmetric Clustering) Diagram

A dynamic BoE can be visualized as a layered symmetric clustering diagram

as in Fig. 7.16. We refer to this diagram as a DS-LASIC (DS-Layered Symmetric

Clustering) diagram. This was developed by incorporating DS-Tree properties. Root

node is {θ0} and the rest of the nodes exactly follow all the DS-Tree properties. We

can use a DS-LASIC diagram to effectively visualize DST dynamic operations and

computations. Fig. 7.16 is a DS-LASIC diagram of an FoD of size 9.

7.4.2.2 DS-TRISEV (DS-Three Dimensional Spring Electrical

Visualization) Model

Fig. 7.17 provides a Three-Dimensional (3D) visualization of a dynamic BoE using

spring electrical model [105–107]. We refer to this model as a DS-TRISEV (DS-Three

Dimensional Spring Electrical Visualization) model. The spring-electrical algorithm

has two forces. The repulsive force, which exists between any two vertices, is inversely

proportional to the distance between them. The attractive force, exists only between

neighboring vertices and is proportional to the square of the distance. Fig. 7.17 is a

DS-TRISEV model of an FoD of size 9. The root node is {θ0} and the rest of the

nodes exactly follow the DS-Tree properties.

7.5 Computational Libraries

We have created three open source libraries, DS-BCL [62], DS-CCL [65] and DS-

CONAC [67]. These libraries are being improved and computational libraries for

other findings are being developed.
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