A Framework for Efficient Implementation and Effective Visualization of Dempster-Shafer Belief Theoretic Computations for Reasoning Under Uncertainty

Ph.D. Dissertation Proposal Defense

Lalintha G. Polpitiya

Supervised by Professor Kamal Premaratne (Committee Chair)
Committee Members: Dr. Manohar N. Murthi, Dr. Stephen J. Murrell, Dr. Jie Xu, Dr. Dilip Sarkar

Department of Electrical and Computer Engineering
University of Miami

4 June 2018

Outline

- 1 Introduction
- 2 Preliminaries
- 3 Efficient Computation of Belief Theoretic Operations
- 4 DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals
- 5 DS-Conditional-All: Efficient and Exact Computation of All Conditionals
- 6 Operations on Dynamic Frames
- 7 Future Work

Outline

- 1 Introduction
 - Reasoning Under Uncertainty: The Role of Dempster-Shafer (DS) Belief Theory
 - Motivation
 - Challenges
 - Contributions

UNIVERSITY OF MIAMI

COLLEGE of ENGINEERING

Expert Systems

UNIVERSITY OF MIAMI

Reasoning Under Uncertainty

"As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality."

- Albert Einstein

 Expert systems are still prone to collapse due to the difficulty in replicating complex environments⁵.

Dempster-Shafer (DS) Belief Theory

- To accommodate uncertainty and data imperfections intelligently, we need to have effective models to capture them.
- The Dempster-Shafer (DS) belief theory is a framework for handling a wide variety of data imperfections ⁶.
 - First introduced by Dempster⁷ in the context of statistical inference.
 - Then developed by Shafer ⁸ into a general framework for uncertainty modeling.
- A foundation for many important developments, including the transferable belief model (TBM)⁹ and the theory of hints¹⁰.

Motivation

- DS theory offers greater expressiveness and flexibility for modeling a wide variety of data imperfections.
- But the main criticism is that DS theoretic (DST) operations involve a higher computational complexity⁶.
 - Computing the DST conditionals, DST belief functions, are non-deterministic polynomial-time hardness (NP-hard) problems¹¹.
- This is further exacerbated by the absence of a flexible and scalable platform for visualizing complex operations in DS theory.
- Developing an efficient computational framework is of critical importance if we are to harness the strengths of DS theory and make it more widely applicable in practice.

- Making Exact Computation of DST Quantities Feasible
 - Several **approximation methods** are available ¹²:
 - But they compromise the quality of the results to gain computational efficiency.
 - Some lack the ability to be extended for DST conditional computations.
 - Exact computation of conditionals is of paramount importance: Quality of results generated from DST strategies depend directly on the precision of the conditional.
- Developing a Feasible and Scalable Computational Framework
 - There is no widely accepted computationally feasible generalized framework to represent DST models and carry out DST operations.
 - A thoughtful discussion about data structures and algorithms for efficient DST computations is still lacking.

- Handling Large Frames of Discernment (FoDs)
 - DST implementations in current use are limited to computations on smaller FoDs.
- Efficient Computation of DST Conditionals: There are two notions of DST conditionals to be dealt with.
 - Dempster's conditional: Perhaps the most extensively utilized DST conditional notion⁸.
 - Fagin-Halpern (FH) conditional: The most natural generalization of the probabilistic conditional notion¹³.

- 4 Efficient Computation of DST Conditionals ...
 - Dempster's conditional computation: Specialization matrix approach ¹⁴.
 - Cannot be used to compute the FH conditional.
 - Employs a $2^{|\Theta|} \times 2^{|\Theta|}$ -sized stochastic matrix and a $2^{|\Theta|} \times 1$ -sized vector containing the focal elements ($|\Theta|$ = cardinality of the FoD).
 - Computational complexity and space complexity are both $\mathcal{O}(2^{|\Theta|} \times 2^{|\Theta|})$.
 - Over 1800 CPU years for an FoD of size 30 and over 15 CPU hours for an FoD of size 20 (assuming 10 million computational iterations per second).
 - FH conditional computation: No existing strategy.
 - Conditional core theorem (CCT)¹⁵ can be used to <u>identify</u> (but not <u>compute</u>) propositions that retain non-zero support after FH conditioning.
 - But its computational complexity becomes $\mathcal{O}(2^{|\Theta|} \times 2^{|\Theta|})$ for large 'dense' FoDs.

- **5** Visualization and Analysis of Complex DST Operations: No existing effective mechanism.
 - The ability to visualize complex DST computations and simulations is invaluable
 - to ensure the integrity of representation and reasoning,
 - to provoke insights that can lead to improvements in computational performance.

Contributions

- Scalable Generalized Computational Framework
- Implicit Index Calculation Mechanism
- Efficient Computation of DST Operations
- 4 Efficient Computation of DST Conditionals
- 5 Computational Libraries
- 6 Effective Visualization Tools

Outline

- 1 Introduction
- 2 Preliminaries
 - DST Basic Notions
 - Belief, Plausibility and Commonality
 - DST Conditionals
- 3 Efficient Computation of Belief Theoretic Operations
- 4 DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals
- 5 DS-Conditional-All: Efficient and Exact Computation of All Conditionals
- 6 Operations on Dynamic Frames
- 7 Future Work

DST Basic Notions

Symbol	Meaning				
$\Theta = \{\theta_0, \ldots, \theta_{n-1}\}$	Frame of discernment (FoD), the set of all possible mutually exclusive and exhaustive propositions. Note $n = \Theta $.				
$ heta_i$	Singletons, i.e., the lowest level of discernible information.				
Ā	Complement of $A \subseteq \Theta$, i.e., those singletons that are not in A .				
$m(\cdot)$	Basic belief assignment (BBA) or mass assignment $m: 2^{\Theta} \mapsto [0,1]$ where $\sum_{A\subseteq\Theta} m(A)=1$ and $m(\varnothing)=0$.				
Focal element	A proposition that receives a non-zero mass.				
\mathfrak{F}	Core, the set of focal elements.				
$\mathcal{E} = \{\Theta, \mathfrak{F}, m\}$	Body of evidence (BoE).				

Belief, Plausibility and Commonality

lacksquare From now on, we assume that the BoE is $\mathcal{E} = \{\Theta, \mathfrak{F}, m(\cdot)\}.$

Definition 1 (Belief)

Belief assigned to $A \subseteq \Theta$ is $BI : 2^{\Theta} \mapsto [0,1]$ where $BI(A) = \sum_{P \in A} m(B)$.

Definition 2 (Plausibility)

Plausibility assigned to $A \subseteq \Theta$ is $Pl: 2^{\Theta} \mapsto [0,1]$ where $Pl(A) = 1 - Bl(\overline{A})$.

Definition 3 (Commonality)

Commonality function of $A \subseteq \Theta$ is $Q: 2^{\Theta} \mapsto [0,1]$ where $Q(A) = \sum_{A \in A} m(B)$.

DST Conditionals

Definition 4 (Dempster's conditional)

Conditional belief $BI(B||A): 2^{\Theta} \mapsto [0,1]$ of B given A is

$$BI(B||A) = \frac{BI(\overline{A} \cup B) - BI(\overline{A})}{1 - BI(\overline{A})}$$
, whenever $BI(\overline{A}) \neq 1$, or equivalently, $PI(A) \neq 0$.

The conditional mass $m(B||A): 2^{\Theta} \mapsto [0,1]$ of B given A is

$$m(B||A) = \begin{cases} \frac{\sum\limits_{C \subseteq \overline{A}} m(B \cup C)}{1 - BI(\overline{A})}, & \text{for } \emptyset \neq B \subseteq A; \\ 0, & \text{otherwise.} \end{cases}$$

Definition 5 (Fagin-Halpern (FH) conditional)

Conditional belief BI(B|A) of B given A is

$$BI(B|A) = \frac{BI(A \cap B)}{BI(A \cap B) + PI(A \cap \overline{B})}$$
, whenever $BI(A) > 0$.

Outline

- 1 Introduction
- 2 Preliminaries
- 3 Efficient Computation of Belief Theoretic Operations
 - REGAP: REcursive Generation of and Access to Propositions
 - DS-Vector
 - DS-Matrix
 - DS-Tree
 - Arbitrary Belief Computations
 - Arbitrary Plausibility and Commonality Computations
 - Experiments
- 4 DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals
- 5 DS-Conditional-All: Efficient and Exact Computation of All Conditionals
- 6 Operations on Dynamic Frames
- 7 Future Work

REGAP: <u>RE</u>cursive <u>Generation of and A</u>ccess to Propositions

Start with $\{\emptyset\}$ element

Figure: REGAP: Start with $\{\emptyset\}$.

- Consider the FoD $\Theta = \{\theta_0, \theta_1, \dots, \theta_{n-1}\}.$
- Suppose we desire to determine the belief potential associated with $A = \{\theta_{k_1}, \theta_{k_2}, \dots, \theta_{k_\ell}\} \subseteq \Theta$.
- The REGAP property allows us to recursively generate the propositions that are relevant for this computation: Start with $\{\emptyset\}$.

Insert singleton $\{\theta_{k_1}\}$

Figure: REGAP: Insert $\{\theta_{k_1}\}$.

■ First insert the singleton $\{\theta_{k_1}\}$ ∈ A. Only one proposition is associated with this singleton, viz.,

$$\{\varnothing\} \cup \{\theta_{k_1}\} = \{\theta_{k_1}\}.$$

Inser singleton $\{\theta_{k_2}\}$

Figure: REGAP: Insert $\{\theta_{k_2}\}$.

■ Next insert another singleton $\{\theta_{k_2}\}\in A$. The new propositions that are associated with this singleton are

$$\{\varnothing\} \cup \{\theta_{k_2}\} = \{\theta_{k_2}\}, \ \{\theta_{k_1}\} \cup \{\theta_{k_2}\} = \{\theta_{k_1}, \theta_{k_2}\}.$$

Insert singleton $\{\theta_{k_3}\}$

Figure: REGAP: Insert $\{\theta_{k_3}\}$.

■ Inserting another singleton $\{\theta_{k_3}\}\in A$ brings the new propositions

$$\begin{split} \{\varnothing\} \cup \{\theta_{k_3}\} &= \{\theta_{k_3}\}, \qquad \{\theta_{k_1}\} \cup \{\theta_{k_3}\} &= \{\theta_{k_1}, \theta_{k_3}\}, \\ \{\theta_{k_2}\} \cup \{\theta_{k_3}\} &= \{\theta_{k_2}, \theta_{k_3}\}, \ \{\theta_{k_1}, \theta_{k_2}\} \cup \{\theta_{k_3}\} &= \{\theta_{k_1}, \theta_{k_2}, \theta_{k_3}\}. \end{split}$$

• In essence, the new propositions associated with a new singleton can be recursively generated by adding the new singleton to each existing proposition.

Generalized representation

Figure: REGAP = \underline{RE} cursive \underline{G} eneration of and \underline{A} ccess to \underline{P} ropositions.

- When $A = \Theta$, REGAP generates the powerset of the FoD Θ .
- These recursively generated propositions can be formulated as a vector, a matrix, or a tree, and utilized to represent a dynamic BoE.
- From now on, we use the following notation:

REGAP(A) = all the propositions that are required to compute BI(A).

DS-Vector: Vector Representation of a Dynamic BoE

Figure: DS-Vector: Vector representation of a dynamic BoE.

- Rectangles represent the recursive steps of dynamic BoE generation.
- Propositions are represented by implicit contiguous indexes. So, no memory allocation is needed to store a proposition.
- Memory allocation is needed only to store the required belief potentials (or, more generally, mass, belief, plausibility, or commonality values).

DS-Matrix: Matrix Representation of a Dynamic BoE

Figure: DS-Matrix: Matrix representation of a dynamic BoE.

DS-Tree: Perfectly Balanced Binary Tree Representation of a Dynamic BoE

Figure: DS-Tree: Perfectly balanced binary tree representation of a dynamic BoE.

DS-Matrix Version

- REGAP(A) generates the propositions relevant to the computation of BI(A).
 - Belief computation is performed by accessing only the subset propositions.
 - Time complexity: $\mathcal{O}(2^{|A|})$.

DS-Matrix Version

- REGAP(A) generates those propositions relevant to the computation of BI(A).
 - Belief computation is performed by accessing only the subset propositions.
 - Time complexity: $\mathcal{O}(2^{|A|})$.

DS-Matrix Version

- REGAP(A) generates those propositions relevant to the computation of BI(A).
 - Belief computation is performed by accessing only the subset propositions.
 - Time complexity: $\mathcal{O}(2^{|A|})$.

DS-Matrix Version

- REGAP(A) generates those propositions relevant to the computation of BI(A).
 - Belief computation is performed by accessing only the subset propositions.
 - Time complexity: $\mathcal{O}(2^{|A|})$.

Arbitrary Plausibility and Commonality Computations

DS-Matrix Version

- Computing the plausibility PI(A): Use $REGAP(\overline{A})$ to compute $BI(\overline{A})$ and use the equation $PI(A) = 1 BI(\overline{A})$.
- Computing the commonality Q(A): Append the proposition A to all propositions generated from $REGAP(\overline{A})$ and apply the belief computation algorithm.

Experiments

Average CPU time of accessing a proposition (μs)

FoD Size	Max. §	DS-Vector	DS-Matrix	List Struct.
2	3	0.379	0.393	0.465
4	15	0.400	0.412	0.510
6	63	0.410	0.454	0.739
8	255	0.443	0.449	1.541
10	1023	0.433	0.496	4.632
12	4095	0.465	0.493	16.906
14	16383	0.465	0.527	67.242
16	65535	0.495	0.517	268.443
18	262143	0.529	0.560	1124.0600
20	1048575	0.575	0.629	4609.3700

- Machine used: Macintosh desktop computer running Mac OS X 10.11.3, with 2.9GHz Intel Core i5 processor and 8GB of 1600MHz DDR3 RAM.
- For each FoD size, the core of focal elements was randomly chosen.
- DST operation was computed for 100,000 randomly chosen propositions from the FoD.

Experiments

Average CPU time of belief computation (μ s)

FoD Size	Max. 3	DS-Vector	DS-Matrix	List Struct.
2	3	0.373	0.362	0.450
4	15	0.378	0.376	0.531
6	63	0.415	0.450	0.833
8	255	0.453	0.508	1.779
10	1023	0.525	0.663	5.529
12	4095	0.655	0.923	20.757
14	16383	0.884	1.314	81.196
16	65535	1.340	2.159	325.930
18	262143	2.107	3.510	1373.110
20	1048575	3.963	6.210	5448.170

A new computational library, which we refer to as BCL (<u>Belief Computation Library</u>)¹⁶ is developed and utilized in the simulations ¹⁷.

Outline

- 1 Introduction
- 2 Preliminaries
- 3 Efficient Computation of Belief Theoretic Operations
- 4 DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals
 - Theoretical Foundation
 - DS-Conditional-One Computational Model
- 5 DS-Conditional-All: Efficient and Exact Computation of All Conditionals
- 6 Operations on Dynamic Frames
- 7 Future Work

UNIVERSITY OF MIAMI
COLLEGE OF ENGINEERING

Alternate Expressions for Conditionals

$$S(A; B) = \sum_{\substack{\emptyset \neq C \subseteq A; \\ \emptyset \neq D \subseteq B}} m(C \cup D)$$

Sum of all masses of propositions that 'straddle' both $A \subseteq \Theta$ and $B \subseteq \Theta$.

$$\mathcal{T}(A;B) = \sum_{C \subseteq A} m(C \cup B)$$

Sum of all masses of propositions in $A \subseteq \Theta$ that strictly 'straddle' proposition $B \subseteq \Theta$.

Proposition 1

Take $A \subseteq \Theta$. For $B \subseteq \Theta$, consider the mappings $\Gamma_A : 2^{\Theta} \mapsto [0,1]$ and $\Pi_A : 2^{\Theta} \mapsto [0,1]$, where

$$\Gamma_A(B) = \sum_{\varnothing \neq X \subseteq \overline{A}} m((A \cap B) \cup X) \text{ and } \Pi_A(B) = \sum_{Y \subseteq (A \cap B)} \Gamma_A(Y).$$

Then the following are true:

- $\Gamma_A(A \cap B) = \Gamma_A(B)$ and $\Pi_A(A \cap B) = \Pi_A(B)$. So, w.l.o.g., take $B \subseteq A$.
- $\Gamma_A(\varnothing) = \Pi_A(\varnothing) = BI(\overline{A}).$
- $\Gamma_A(B) = \mathcal{T}(\overline{A}; A \cap B) m(A \cap B).$
- $\blacksquare \Pi_A(B) = \Pi_A(\varnothing) + \mathcal{S}(\overline{A}; A \cap B).$

Alternate Expressions for Conditionals

- We use the **DS-Conditional-One** computational model to compute the following:
 - Dempster's and FH conditional beliefs of an arbitrary proposition.
 - Dempster's conditional masses of an arbitrary proposition.
- To proceed, we employ the following alternate expressions:

Proposition 2 (Propositions for Dempster's Conditional Belief and Mass)

Take $A \subseteq \Theta$ s.t. $BI(\overline{A}) \neq 1$. Then, BI(B|A) and m(B|A) can be expressed as

$$BI(B||A) = \frac{BI(A \cap B) + \mathcal{S}(\overline{A}; A \cap B)}{1 - BI(\overline{A})}; \quad m(B||A) = \begin{cases} \frac{\mathcal{T}(A; A \cap B)}{1 - BI(\overline{A})}, & \text{for } \emptyset \neq B \subseteq A; \\ 0, & \text{otherwise.} \end{cases}$$

Proposition 3 (Propositions for FH Conditional Belief)

Take $A \subseteq \Theta$ s.t. BI(A) > 0. Then, BI(B|A) can be expressed as

$$BI(B|A) = \frac{BI(A \cap B)}{1 - BI(\overline{A}) - S(\overline{A}; A \cap B)}.$$

DS-Conditional-One Computational Model

■ Note that we need only the following four quantities to compute the Dempster's conditional beliefs/masses and FH conditional beliefs:

$$\underbrace{BI(\overline{A})}_{REGAP(\overline{A})}; \underbrace{BI(A\cap B)}_{REGAP(A\cap B)}; \underbrace{\mathcal{S}(\overline{A};A\cap B)}_{REGAP(\overline{A})\otimes REGAP(A\cap B)}; \underbrace{\mathcal{T}(\overline{A};A\cap B)}_{(REGAP(\overline{A})\otimes (A\cap B))+(A\cap B)}$$

 To explain how the DS-Conditional-One model allows us to easily identify these quantities, let

FoD:
$$\Theta = \{\theta_0, \theta_1, \dots, \theta_{n-1}\};$$
 conditioning proposition:
$$A = \{a_0, a_1, \dots, a_{|A|-1}\}, \ a_i \in \Theta;$$
 its complement:
$$\overline{A} = \{\alpha_0, \alpha_1, \dots, \alpha_{|\overline{A}|-1}\}, \ \alpha_i \in \Theta;$$
 conditioned proposition:
$$B = \{a_0, a_2\}.$$

- Construct the DS-Matrix as follows:
 - First row: conditioning proposition $A = \{a_0, a_1, \dots, a_{|A|-1}\}$.
 - First column: its complement $\overline{A} = \{\alpha_0, \alpha_1, \dots, \alpha_{|\overline{A}|-1}\}$.
- We can now directly identify $REGAP(A \cap B)$, $REGAP(\overline{A})$, $REGAP(\overline{A}) \otimes REGAP(A \cap B)$, $(REGAP(\overline{A}) \otimes (A \cap B)) + (A \cap B)$.
- We can also directly identify REGAP(A), $REGAP(\overline{A}) \otimes REGAP(A)$, $\Gamma_A(C)$, $\forall C \subseteq B$.

- Construct the DS-Matrix as follows:
 - First row: conditioning proposition $A = \{a_0, a_1, \dots, a_{|A|-1}\}$.
 - First column: its complement $\overline{A} = \{\alpha_0, \alpha_1, \dots, \alpha_{|\overline{A}|-1}\}$.
- We can now directly identify $REGAP(A \cap B)$, $REGAP(\overline{A})$, $REGAP(\overline{A}) \otimes REGAP(A \cap B)$, $(REGAP(\overline{A}) \otimes (A \cap B)) + (A \cap B)$.
- We can also directly identify REGAP(A), $REGAP(\overline{A}) \otimes REGAP(A)$, $\Gamma_A(C)$, $\forall C \subseteq B$.

- Construct the DS-Matrix as follows:
 - First row: conditioning proposition $A = \{a_0, a_1, \dots, a_{|A|-1}\}.$
 - First column: its complement $\overline{A} = \{\alpha_0, \alpha_1, \dots, \alpha_{|\overline{A}|-1}\}.$
- We can now directly identify $REGAP(A \cap B)$, $REGAP(\overline{A})$, $REGAP(\overline{A}) \otimes REGAP(A \cap B)$, $(REGAP(\overline{A}) \otimes (A \cap B)) + (A \cap B)$.
- We can also directly identify REGAP(A), $REGAP(\overline{A}) \otimes REGAP(A)$, $\Gamma_A(C)$, $\forall C \subseteq B$.

- Construct the DS-Matrix as follows:
 - First row: conditioning proposition $A = \{a_0, a_1, \dots, a_{|A|-1}\}.$
 - First column: its complement $\overline{A} = \{\alpha_0, \alpha_1, \dots, \alpha_{|\overline{A}|-1}\}.$
- We can now directly identify $REGAP(\underline{A} \cap B)$, $REGAP(\overline{A})$, $REGAP(\overline{A}) \otimes REGAP(\underline{A} \cap B)$, $(REGAP(\overline{A}) \otimes (A \cap B)) + (A \cap B)$.
- We can also directly identify REGAP(A), $REGAP(\overline{A}) \otimes REGAP(A)$, $\Gamma_A(C)$, $\forall C \subseteq B$.

- Construct the DS-Matrix as follows:
 - First row: conditioning proposition $A = \{a_0, a_1, \dots, a_{|A|-1}\}.$
 - First column: its complement $\overline{A} = \{\alpha_0, \alpha_1, \ldots, \alpha_{|\overline{A}|-1}\}.$
- $REGAP(A \cap B),$ $REGAP(\overline{A}),$ $REGAP(\overline{A}) \otimes REGAP(A \cap B),$ $(REGAP(\overline{A}) \otimes (A \cap B)) + (A \cap B).$
- We can also directly identify REGAP(A), $REGAP(\overline{A}) \otimes REGAP(A)$, $\Gamma_A(C)$, $\forall C \subseteq B$.

■ We can now directly identify

- Construct the DS-Matrix as follows:
 - First row: conditioning proposition $A = \{a_0, a_1, \dots, a_{|A|-1}\}.$
 - First column: its complement $\overline{A} = \{\alpha_0, \alpha_1, \dots, \alpha_{|\overline{A}|-1}\}.$
- We can now directly identify $REGAP(A \cap B)$, $REGAP(\overline{A})$, $REGAP(\overline{A}) \otimes REGAP(A \cap B)$, $(REGAP(\overline{A}) \otimes (A \cap B)) + (A \cap B)$.
- We can also directly identify REGAP(A), $REGAP(\overline{A}) \otimes REGAP(A)$, $\Gamma_A(C)$, $\forall C \subseteq B$.

- Construct the DS-Matrix as follows:
 - First row: conditioning proposition $A = \{a_0, a_1, \dots, a_{|A|-1}\}.$
 - First column: its complement $\overline{A} = \{\alpha_0, \alpha_1, \ldots, \alpha_{|\overline{A}|-1}\}.$
- We can now directly identify $REGAP(A \cap B)$, $REGAP(\overline{A})$, $REGAP(\overline{A}) \otimes REGAP(A \cap B)$, $(REGAP(\overline{A}) \otimes (A \cap B)) + (A \cap B)$.
- We can also directly identify REGAP(A), $REGAP(\overline{A}) \otimes REGAP(A)$, $\Gamma_A(C)$, $\forall C \subseteq B$.

Look at Propositions 2 and 3.

Use	To Compute	Complexity	
		Time	Space
Dempster's and FH Conditional Bel	ief of an Arbitrary F	Proposition:	
(1) $REGAP(A \cap B)$	$BI(A \cap B)$	$\mathcal{O}(2^{ A\cap B })$	$\mathcal{O}(2^{ \Theta })$
(2) $REGAP(\overline{A})$	$BI(\overline{A}) = \Gamma_A(\emptyset)$	$\mathcal{O}(2^{ \overline{A} })$	$\mathcal{O}(2^{ \Theta })$
(3) $REGAP(\overline{A}) \otimes REGAP(A \cap B)$	$\mathcal{S}(\overline{A};A\cap B)$	$\mathcal{O}(2^{ \overline{A} + A\cap B })$	$\mathcal{O}(2^{ \Theta })$

(2) $REGAP(\overline{A})$

Dempster's Conditional Mass of an Arbitrary Proposition:

 $BI(\overline{A}) = \Gamma_A(\emptyset)$

 $\mathcal{O}(2^{|\overline{A}|})$

 $\mathcal{O}(2^{|\Theta|})$

(4) $(REGAP(\overline{A})\otimes(A\cap B)) + (A\cap B)$ $\mathcal{T}(\overline{A};A\cap B)$ $\mathcal{O}(max(2^{|\overline{A}|},|A\cap B|))$ $\mathcal{O}(2^{|\Theta|})$

Outline

- 1 Introduction
- 2 Preliminaries
- 3 Efficient Computation of Belief Theoretic Operations
- 4 DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals
- 5 DS-Conditional-All: Efficient and Exact Computation of All Conditionals
 - Theoretical Foundation
 - DS-Conditional-All Computational Model
 - Experiments
- 6 Operations on Dynamic Frames
- 7 Future Work

UNIVERSITY OF MIAMI
COLLEGE OF ENGINEERING

Alternate Expressions for Conditionals

- We use **DS-Conditional-All** computational model to compute the following:
 - Dempsters' and FH conditional beliefs of all propositions,
 - Dempsters' conditional masses of all propositions.

Proposition 4 (Propositions for Dempster's Conditional Belief and Mass)

Take $A \subseteq \Theta$ s.t. $Bl(\overline{A}) \neq 1$. Then, Bl(B|A) and m(B|A) can be expressed as

$$BI(B\|A) = \frac{BI(A\cap B) + \Pi_A(A\cap B) - \Gamma_A(\{\varnothing\})}{1 - \Gamma_A(\{\varnothing\})}; \ m(B\|A) = \frac{m(A\cap B) + \Gamma_A(A\cap B)}{1 - \Gamma_A(\{\varnothing\})}.$$

Proposition 5 (Propositions for FH Conditional Belief)

Take $A \subseteq \Theta$ s.t. BI(A) > 0. Then, BI(B|A) can be expressed as

$$BI(B|A) = \frac{BI(A \cap B)}{1 - \Pi_A(A \cap B)}.$$

Construct the DS-Matrix as before with

$$A = \{a_0, a_1, \dots, a_{|A|-1}\}$$
 and $\overline{A} = \{\alpha_0, \alpha_1, \dots, \alpha_{|\overline{A}|-1}\}.$

- Utilize the fast Möbius transformation (FMT)^{18,19}.
- Perform following computations: $\Gamma_A(B)$, $\forall B \subseteq A$, $\Pi_A(B)$ values from $\Gamma_A(B)$, $\forall B \subseteq A$, BI(B) values from BBA m(B), $\forall B \subseteq A$.

Construct the DS-Matrix as before with

$$\frac{A}{A} = \{a_0, a_1, \dots, a_{|A|-1}\} \text{ and }$$
$$\frac{A}{A} = \{\alpha_0, \alpha_1, \dots, \alpha_{|\overline{A}|-1}\}.$$

- Utilize the fast Möbius transformation (FMT)^{18,19}.
- Perform following computations $\Gamma_A(B)$, $\forall B \subseteq A$, $\Pi_A(B)$ values from $\Gamma_A(B)$, $\forall B \subseteq A$, BI(B) values from BBA m(B), $\forall B \subseteq A$.

Construct the DS-Matrix as before with

$$\frac{A}{A} = \{a_0, a_1, \dots, a_{|A|-1}\} \text{ and }$$
$$\frac{A}{A} = \{\alpha_0, \alpha_1, \dots, \alpha_{|\overline{A}|-1}\}.$$

- Utilize the fast Möbius transformation (FMT)^{18,19}.
- Perform following computations $\Gamma_A(B)$, $\forall B \subseteq A$, $\Pi_A(B)$ values from $\Gamma_A(B)$, $\forall B \subseteq A$, Bl(B) values from BBA m(B), $\forall B \subseteq A$.

 Construct the DS-Matrix as before with

$$\frac{A}{A} = \{a_0, a_1, \dots, a_{|A|-1}\} \text{ and }$$
$$\frac{A}{A} = \{\alpha_0, \alpha_1, \dots, \alpha_{|\overline{A}|-1}\}.$$

- Utilize the fast Möbius transformation (FMT)^{18,19}.
- Perform following computations $\Gamma_A(B), \forall B \subseteq A, \Pi_A(B)$ values from $\Gamma_A(B), \forall B \subseteq A, BI(B)$ values from BBA $m(B), \forall B \subseteq A.$

• Construct the DS-Matrix as before with $A = \{a_0, a_1, \dots, a_{|A|-1}\}$ and

$$A = \{a_0, a_1, \dots, a_{|A|-1}\}$$
 as $\overline{A} = \{\alpha_0, \alpha_1, \dots, \alpha_{|\overline{A}|-1}\}.$

- Utilize the fast Möbius transformation (FMT)^{18,19}.
- Perform following computations $\Gamma_A(B), \forall B \subseteq A, \Pi_A(B)$ values from $\Gamma_A(B), \forall B \subseteq A, BI(B)$ values from BBA $m(B), \forall B \subseteq A.$

■ Look at Propositions 4 and 5.

Use	To Compute	Complexity	
		Time	Space
Dempster's and FH Condition	nal Beliefs of All Propositions:		
$REGAP(\overline{A})$	$BI(\overline{A}) = \Gamma_A(\emptyset) = \Pi_A(\emptyset)$	$\mathcal{O}(2^{ \overline{A} })$	$\mathcal{O}(2^{ \Theta })$
(1) $REGAP(\overline{A}) \otimes B, \ \forall B \subseteq A$	$\Gamma_A(B), \ \forall B \subseteq A$	$\mathcal{O}(2^{ \Theta })$	$\mathcal{O}(2^{ \Theta })$
(2) REGAP(A)	$\Pi_A(B), \ \forall B \subseteq A \text{ from the FMT}$	$\mathcal{O}(2^{ A } \times A)$	$\mathcal{O}(2^{ A })$
(3) REGAP(A)	$BI(B), \forall B \subseteq A \text{ from the FMT}$	$\mathcal{O}(2^{ A } \times A)$	$\mathcal{O}(2^{ A })$
Dempster's Conditional Mas	s of an Arbitrary Proposition:		
$REGAP(\overline{A})$	$BI(\overline{A}) = \Gamma_A(\emptyset) = \Pi_A(\emptyset)$	$\mathcal{O}(2^{ \overline{A} })$	$\mathcal{O}(2^{ \Theta })$
(1) $REGAP(\overline{A}) \otimes B, \forall B \subseteq A$	$\Gamma_A(B), \ \forall B \subseteq A$	$\mathcal{O}(2^{ \Theta })$	$\mathcal{O}(2^{ \Theta })$

Experiments

Figure: CPU time for arbitrary FH (Dempster's) belief conditional computation versus |A| for different |B| values (when $|\Theta| = 10$, $|\Theta| = 20$, and $|\Theta| = 30$).

■ For a given FoD size, we selected a random set of focal elements, with randomly selected mass values, and conducted 10,000 conditional computations for randomly chosen propositions A and $B \subseteq A$.

FH or Dempster's

DS-Conditional-One Model

Experiments

Conditional →

Method →

		BI(B A)	BI(B A)	m(B A)	
	FoD	or $BI(B A)$	or $BI(B A)$	or $m(B A)$	m(B A)
Θ	Max. [₹	(Arbitrary)	(ÅII)	(All)	(Arbitrary)
2	3	0.0008	0.0016	0.0024	0.0008
4	15	0.0008	0.0057	0.0068	0.0008
6	63	0.0009	0.0189	0.0208	0.0009
8	255	0.0011	0.0707	0.0758	0.0010
10	1,023	0.0016	0.3038	0.3208	0.0012
12	4,095	0.0033	1.5535	1.6206	0.0016
14	16,383	0.0095	15.0000	17.1429	0.0030
16	65,535	0.0323	$1\overline{31.8750}$	$1\overline{36.8750}$	0.0074
18	262,143	0.1223	$1,\overline{072.2200}$	$1,\overline{077.7800}$	0.0218
20	1,048,575	0.4724	8,670.0000	8,698.0000	0.0771
22	4,194,303	3.1889	71,115.9000	73,942.3000	0.2853
24	16,777,215	18.7807	653,268.0000	660,883.0000	0.6467
26	67,108,863	83.0787	1.6334 cpu hours	1.6915 cpu hours	1.1744
28	268,435,455	338.2960	***	***	31.2735
30	1,073,741,823	1,509.5000	***	***	111.2910
Table [.]	DS-Conditional-	One model	Average computati	onal times with DS	-COCA library

Table: DS-Conditional-One model. Average computational times with DS-COCA library (ms) (*** denotes computations not completed within a feasible time or space requirement. Conditional computations for larger FoDs were done a supercomputer (https://ccs.miami.edu/pegasus) (underlined in Tables)).

Dempster's

Dempster's

Experiments

Conditional →

Method →

		BI(B A)	m(B A)		
	FoD	or $BI(B A)$	or $m(B A)$	m(B A)	m(B A)
Θ	Max. ℜ	(All)	(ÅII)	(All)	(All)
2	3	0.0011	0.0014	0.0015	0.0015
4	15	0.0014	0.0018	0.0020	0.0070
4 6 8	63	0.0026	0.0034	0.0031	0.0767
8	255	0.0067	0.0091	0.0054	1.1264
10	1,023	0.0211	0.0303	0.0135	98.4795
12	4,095	0.0770	0.1133	0.0427	1,581.8300
14	16,383	0.2950	0.4378	0.1532	$2\overline{4,847.000}$
16	65,535	1.1592	1.7243	0.5814	396,860.000
18	262,143	6.5901	9.2096	2.3430	1.7637 cpu hour
20	1,048,575	26.7221	39.0397	9.3537	***
22	4,194,303	$1\overline{12.4180}$	$1\overline{66.0070}$	$4\overline{3.5348}$	**:
24	16,777,215	500.3420	689.8700	233.6080	**
26	67,108,863	2,239.2400	2,908.7000	1,118.9500	**
28	268,435,455	9,273.8100	12,406.4000	4,976.9700	**
30	1,073,741,823	42,087.2000	52,055.8000	25,354.9000	**

DS-Conditional-All Model

FH or Dempster's

Table: DS-Conditional-All model versus specialization matrix based method. Average computational times (ms) (*** denotes computations not completed within a feasible time or space requirement. Conditional computations for larger FoDs were done a supercomputer (https://ccs.miami.edu/pegasus) (underlined in Tables)).

Specialization Mat.

Dempster's

Time and Space Complexity Comparison

Figure: Time and space complexity comparison of DS-Conditional-One (or DS-Conditional-All) model with the specialization matrix approach (Theoretical computational times calculated assuming 10,000,000 iterations per second).

Important Remarks

- Reasons for significant performance in performance:
 - Smaller matrix size (corresponding to the BoE only).
 - No matrix multiplications (only additions are involved).
 - Repetitive computations avoided.
 - Access operation of a focal element takes only constant time.
- An outcome of this research: *DS-COCA* library ²⁰.

Figure: Best use of DST conditional computation models.

- These models can also be used for the following purposes:
 - Visualization and analysis of the conditional computation process.
 - Real-time evidence fusion and uncertainty reasoning applications ²¹.

Outline

- 1 Introduction
- 2 Preliminaries
- 3 Efficient Computation of Belief Theoretic Operations
- 4 DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals
- 5 DS-Conditional-All: Efficient and Exact Computation of All Conditional
- 6 Operations on Dynamic Frames
- 7 Future Work

Operations on Dynamic Frames: Removing Singleton

Figure: DS-Vector

Figure: DS-Matrix

Figure: DS-Tree

Outline

- 1 Introduction
- 2 Preliminaries
- 3 Efficient Computation of Belief Theoretic Operations
- 4 DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals
- 5 DS-Conditional-All: Efficient and Exact Computation of All Conditional
- 6 Operations on Dynamic Frames
- 7 Future Work
 - DST Fusion Strategies
 - Baseline Network Selection in Interferometric Synthetic Aperture Radar (InSAR)
 - Effective DST Visualizations
 - Computational Libraries

UNIVERSITY OF MIAMI
COLLEGE of ENGINEERING

DST Fusion Strategies

- An efficient algorithm for the Dempster's Combination Rule (DCR).
- Address DCR's limitations regarding conflicting evidence.
- Develop an effective strategy to apply the DCR to multiple BoEs.

Figure: DCR for 2 BoEs.

Figure: DST conjunctive combination of 2 BoEs.

DST Fusion Strategies

Figure: Visualization of conflicting evidence in DCR.

Figure: DCR for 3 BoEs.

DST Fusion Strategies

- We are also working on developing efficient algorithms for the following DST fusion strategies:
 - Conditional Update Equation (CUE)²².
 - Conditional Fusion Equation (CFE)²³.
 - Pignistic transformation ²⁴.
- We plan to develop efficient algorithms and data structures to work with special low density BoEs:
 - Dirichlet belief functions²⁵.
 - Consonant belief functions⁸.
 - Single focal element (SFE) BoEs.
 - Other low density BoEs.
- We are conducting a wide range of experiments with dynamic operations to improve the computational performance.

Baseline Network Selection in InSAR

- Synthetic aperture radar interferometry (InSAR)²⁶ is an important technique that can measure terrain deformation with high precision.
- InSAR finds application include geophysical monitoring, including earthquakes, volcanic eruptions, landslides, and hydrological subsidence ^{27,28}.
- We plan to use our newly developed algorithms and data structures to develop an efficient selection criterion to identify the best baseline network, which is a primary component in InSAR processing.
- We have already conducted two research studies:
 - Network selection using centrality concepts ²⁹.
 - Identifying higher quality networks using deep learning 30 techniques.
- Both these initial steps have yielded promising results.

Baseline Network Selection in InSAR

Figure: Network selection using flow-betweenness centrality. (a)-(d) Network of baseline history. (e)-(h) Network of interferograms. (i)-(l) Map of temporal coherence.

Baseline Network Selection in InSAR

- 1200 networks were used to train and test the AI prototype of network quality measurement.
- Each network contains 5 blue and 5 green nodes.
- The value of the edges between the same color nodes is +1 and otherwise -1.
- The trained AI prototype gave 99.3% accuracy.
- The ongoing challenging task is to adapt uncertainty reasoning capabilities for a robust strategy for practical InSAR processing.

Figure: Six out of 1200 networks used in the deep learning strategy.

Effective DST Visualizations

Figure: DS-LASIC (DS-Layered Symmetric Clustering) Diagram: Dynamic BoE representation as a layered symmetric clustering diagram when $|\Theta| = 9$.

Figure: DS-TRISEV (DS-Three Dimensional Spring Electrical Visualization) Model: 3D dynamic BoE representation using spring electrical 31 model when $|\Theta| = 9$.

Computational Libraries

(a) BCL: Belief Computation (b) CCL: Conditional Compu- (c) Library 16

tation Library 32

DS-COCA DS-Conditional-One DS-Conditional-All²⁰ Library: and

■ These libraries are being improved and computational libraries for other findings are being developed.

UNIVERSITY OF MIAMI COLLEGE of ENGINEERING

References I

- D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis, "Mastering the game of Go without human knowledge," *Nature*, vol. 550, no. 7676, pp. 354–359, Oct. 2017.
- [2] Y. Leviathan and Y. Matias, "Google Duplex: An AI System for Accomplishing Real-World Tasks Over the Phone," May 2018. [Online]. Available: https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html
- [3] Y. Liu, K. Gadepalli, M. Norouzi, G. E. Dahl, T. Kohlberger, A. Boyko, S. Venugopalan, A. Timofeev, P. Q. Nelson, G. S. Corrado, J. D. Hipp, L. Peng, and M. C. Stumpe, "Detecting Cancer Metastases on Gigapixel Pathology Images," CoRR, vol. abs/1703.0, Mar. 2017. [Online]. Available: http://arxiv.org/abs/1703.02442
- [4] D. J. Fagnant and K. Kockelman, "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," *Transportation Research Part A: Policy and Practice*, vol. 77, pp. 167–181, July 2015.
- NHTSA, "Tesla Crash Preliminary Evaluation Report: The Office of Defects Investigation (ODI) PE 16-007,"
 U.S. Department of Transportation, National Highway Traffic Safety Administration, Washington, DC, Tech.
 Rep., Jan. 2017. [Online]. Available: https://static.nhtsa.gov/odi/inv/2016/INCLA-PE16007-7876.pdf
- [6] R. R. Yager and L. Liu, Eds., Classic Works of the Dempster-Shafer Theory of Belief Functions. Berlin Heidelberg: Springer-Verlag, 2008.
- [7] A. P. Dempster, "Upper and lower probabilities induced by a multivalued mapping," Ann. Math. Stat., vol. 38, no. 2, pp. 325–339, Apr. 1967.
- [8] G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ: Princeton Univ. Press, 1976.
- [9] P. Smets and R. Kennes, "The transferable belief model," Artif. Intell., vol. 66, no. 2, pp. 191–234, Apr. 1994.
- [10] J. Kohlas and P.-A. Monney, A Mathematical Theory of Hints, 1st ed. Berlin Heidelberg: Springer-Verlag, 1995, vol. 425.
- [11] P. Orponen, "Dempster's Rule of Combination is #P-complete," Artif. Intell., vol. 44, no. 1-2, pp. 245–253, July 1990.

References II

- [12] T. Denœux, "40 years of Dempster-Shafer theory," Int. J. Approx. Reason., vol. 79, no. C, pp. 1-6, Dec. 2016.
- [13] R. Fagin and J. Y. Halpern, "A new approach to updating beliefs," in *Proc. 6th Conf. Uncertainty in Artificial Intelligence (UAI)*, Cambridge, MA, July 1990, pp. 347–374.
- [14] P. Smets, "The application of the matrix calculus to belief functions," *Int. J. Approx. Reason.*, vol. 31, no. 1-2, pp. 1–30, Oct. 2002.
- [15] T. L. Wickramarathne, K. Premaratne, and M. N. Murthi, "Toward efficient computation of the Dempster-Shafer belief theoretic conditionals," *IEEE Trans. Cybern.*, vol. 43, no. 2, pp. 712–724, Apr. 2013.
- [16] ProFuSELab, "Belief Computation Library," 2016. [Online]. Available: https://github.com/ProFuSELab/Belief-Computation-Library
- [17] L. G. Polpitiya, K. Premaratne, M. N. Murthi, and D. Sarkar, "A framework for efficient computation of belief theoretic operations," in *Proc. 19th Int. Conf. Information Fusion (FUSION)*, Heidelberg, Germany, July 2016, pp. 1570–1577.
- [18] H. M. Thoma, "Factorization of Belief Functions," Ph.D. dissertation, Dept. Stat., Harvard Univ., Cambridge, MA, 1989.
- [19] R. Kennes and P. Smets, "Fast algorithms for Dempster-Shafer theory," in Proc. 3rd Int. Conf. Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), Paris, France, July 1990, pp. 14–23.
- [20] ProFuSELab, "DS-COCA: DS-Conditional-One and DS-Conditional-All in C++," 2018. [Online]. Available: https://profuselab.github.io/DS-COCA/
- [21] L. G. Polpitiya, K. Premaratne, M. N. Murthi, and D. Sarkar, "Efficient computation of belief theoretic conditionals," in *Proc. 10th Int. Symp. Imprecise Probability: Theories and Applications (ISIPTA)*, Lugano, Switzerland, July 2017, pp. 265–276.
- [22] K. Premaratne, M. Murthi, J. Zhang, M. Scheutz, and P. Bauer, "A Dempster-Shafer theoretic conditional approach to evidence updating for fusion of hard and soft data," in *Proc. 12th Int. Conf. Information Fusion* (FUSION), Seattle, WA, July 2009, pp. 2122–2129.

References III

- [23] T. L. Wickramarathne, K. Premaratne, and M. N. Murthi, "Consensus-Based Credibility Estimation of Soft Evidence for Robust Data Fusion," in *Proc. 2nd Int. Conf. Belief Functions (BELIEF)*, Compiègne, France, May 2012, pp. 301–309.
- [24] P. Smets, "Decision Making in a Context where Uncertainty is Represented by Belief Functions," in Belief functions in business decisions, R. P. Srivastava and T. J. Mock, Eds. Heidelberg, Germany: Physica-Verlag, 2002, vol. 88, ch. 2, pp. 17–61.
- [25] A. Jøsang and Z. Elouedi, "Interpreting Belief Functions as Dirichlet Distributions," in Proc. European Conf. Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU), Hammamet, Tunisia, Oct. 2007, pp. 393–404.
- [26] R. F. Hanssen, Radar Interferometry Data Interpretation and Error Analysis, ser. Remote Sensing and Digital Image Processing. Dordrecht, The Netherlands: Kluwer Academic, 2001, vol. 2.
- [27] S. Jónsson, H. Zebker, P. Cervelli, P. Segall, H. Garbeil, P. Mouginis-Mark, and S. Rowland, "A shallowâĂŘdipping dike fed the 1995 flank eruption at Fernandina Volcano, Galápagos, observed by satellite radar interferometry," *Geophys. Res. Lett.*, vol. 26, no. 8, pp. 1077–1080, Apr. 1999.
- [28] F. Amelung, S. Jónsson, H. Zebker, and P. Segall, "Widespread uplift and âĂŸtrapdoor' faulting on Galápagos volcanoes observed with radar interferometry," *Nature*, vol. 407, no. 6807, pp. 993–996, Oct. 2000.
- [29] M. Newman, Networks, 1st ed. New York: Oxford Univ. Press, 2010.
- [30] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," *Nature*, vol. 521, no. 7553, pp. 436–444, May 2015.
- [31] T. M. J. Fruchterman and E. M. Reingold, "Graph drawing by force-directed placement," Software: Practice and Experience, vol. 21, no. 11, pp. 1129–1164, Nov. 1991.
- [32] ProFuSELab, "Conditional Computation Library," 2017. [Online]. Available: https://profuselab.github.io/Conditional-Computation-Library/

Thank You! Questions?

