
A Framework for Efficient Implementation and Effective
Visualization of Dempster-Shafer Belief Theoretic

Computations for Reasoning Under Uncertainty
Ph.D. Dissertation Proposal Defense

Lalintha G. Polpitiya

Supervised by Professor Kamal Premaratne (Committee Chair)
Committee Members: Dr. Manohar N. Murthi, Dr. Stephen J. Murrell, Dr. Jie Xu, Dr. Dilip Sarkar

Department of Electrical and Computer Engineering
University of Miami

4 June 2018

1/72

Outline

1 Introduction

2 Preliminaries

3 Efficient Computation of Belief Theoretic Operations

4 DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals

5 DS-Conditional-All: Efficient and Exact Computation of All Conditionals

6 Operations on Dynamic Frames

7 Future Work

2/72

Introduction

Outline

1 Introduction
Reasoning Under Uncertainty: The Role of Dempster-Shafer (DS) Belief Theory
Motivation
Challenges
Contributions

2 Preliminaries

3 Efficient Computation of Belief Theoretic Operations

4 DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals

5 DS-Conditional-All: Efficient and Exact Computation of All Conditionals

6 Operations on Dynamic Frames

7 Future Work

3/72

Introduction Reasoning Under Uncertainty: The Role of Dempster-Shafer (DS) Belief Theory

Expert Systems

Beat champion players at Chess and Go1.
Allow artificial intelligence (AI) assistants to book appointments over the
phone2.
Diagnose and predict disease in health care3.
Drive autonomous vehicles4.

4/72

Introduction Reasoning Under Uncertainty: The Role of Dempster-Shafer (DS) Belief Theory

Reasoning Under Uncertainty

“As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality.”

- Albert Einstein

Expert systems are still prone to collapse due to the difficulty in replicating
complex environments5.

5/72

Introduction Reasoning Under Uncertainty: The Role of Dempster-Shafer (DS) Belief Theory

Dempster-Shafer (DS) Belief Theory

To accommodate uncertainty and data imperfections intelligently, we need to
have effective models to capture them.

The Dempster-Shafer (DS) belief theory is a framework for handling a wide
variety of data imperfections6.

First introduced by Dempster 7 in the context of statistical inference.

Then developed by Shafer 8 into a general framework for uncertainty modeling.

A foundation for many important developments, including the transferable
belief model (TBM)9 and the theory of hints10.

6/72

Introduction Motivation

Motivation

DS theory offers greater expressiveness and flexibility for modeling a wide
variety of data imperfections.

But the main criticism is that DS theoretic (DST) operations involve a
higher computational complexity6.

Computing the DST conditionals, DST belief functions, are non-deterministic
polynomial-time hardness (NP-hard) problems 11.

This is further exacerbated by the absence of a flexible and scalable
platform for visualizing complex operations in DS theory.

Developing an efficient computational framework is of critical
importance if we are to harness the strengths of DS theory and make it more
widely applicable in practice.

7/72

Introduction Challenges

Challenges

1 Making Exact Computation of DST Quantities Feasible

Several approximation methods are available 12:

But they compromise the quality of the results to gain computational efficiency.

Some lack the ability to be extended for DST conditional computations.

Exact computation of conditionals is of paramount importance: Quality of
results generated from DST strategies depend directly on the precision of the
conditional.

2 Developing a Feasible and Scalable Computational Framework

There is no widely accepted computationally feasible generalized framework to
represent DST models and carry out DST operations.

A thoughtful discussion about data structures and algorithms for efficient DST
computations is still lacking.

8/72

Introduction Challenges

Challenges

3 Handling Large Frames of Discernment (FoDs)

DST implementations in current use are limited to computations on smaller
FoDs.

4 Efficient Computation of DST Conditionals: There are two notions of DST
conditionals to be dealt with.

Dempster’s conditional: Perhaps the most extensively utilized DST
conditional notion 8.

Fagin-Halpern (FH) conditional: The most natural generalization of the
probabilistic conditional notion 13.

9/72

Introduction Challenges

Challenges

4 Efficient Computation of DST Conditionals ...

Dempster’s conditional computation: Specialization matrix approach 14.

Cannot be used to compute the FH conditional.

Employs a 2∣Θ∣ × 2∣Θ∣-sized stochastic matrix and a 2∣Θ∣ × 1-sized vector
containing the focal elements (∣Θ∣ = cardinality of the FoD).

Computational complexity and space complexity are both O(2∣Θ∣ × 2∣Θ∣).

Over 1800 CPU years for an FoD of size 30 and over 15 CPU hours for an FoD
of size 20 (assuming 10 million computational iterations per second).

FH conditional computation: No existing strategy.

Conditional core theorem (CCT) 15 can be used to identify (but not compute)
propositions that retain non-zero support after FH conditioning.

But its computational complexity becomes O(2∣Θ∣ × 2∣Θ∣) for large ‘dense’ FoDs.

10/72

Introduction Challenges

Challenges

5 Visualization and Analysis of Complex DST Operations: No existing effective
mechanism.

The ability to visualize complex DST computations and simulations is
invaluable

to ensure the integrity of representation and reasoning,

to provoke insights that can lead to improvements in computational
performance.

11/72

Introduction Contributions

Contributions

1 Scalable Generalized Computational Framework

2 Implicit Index Calculation Mechanism

3 Efficient Computation of DST Operations

4 Efficient Computation of DST Conditionals

5 Computational Libraries

6 Effective Visualization Tools

12/72

Preliminaries

Outline

1 Introduction

2 Preliminaries
DST Basic Notions
Belief, Plausibility and Commonality
DST Conditionals

3 Efficient Computation of Belief Theoretic Operations

4 DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals

5 DS-Conditional-All: Efficient and Exact Computation of All Conditionals

6 Operations on Dynamic Frames

7 Future Work

13/72

Preliminaries DST Basic Notions

DST Basic Notions

Symbol Meaning

Θ = {θ0, . . . , θn−1} Frame of discernment (FoD), the set of all possible mutually
exclusive and exhaustive propositions. Note n = ∣Θ∣.

θi Singletons, i.e., the lowest level of discernible information.

A Complement of A ⊆ Θ, i.e., those singletons that are not in
A.

m(⋅) Basic belief assignment (BBA) or mass assignment m ∶ 2Θ ↦
[0,1] where ∑A⊆Θ m(A) = 1 and m(∅) = 0.

Focal element A proposition that receives a non-zero mass.

F Core, the set of focal elements.

E = {Θ, F, m} Body of evidence (BoE).

14/72

Preliminaries Belief, Plausibility and Commonality

Belief, Plausibility and Commonality

From now on, we assume that the BoE is E = {Θ,F,m(⋅)}.

Definition 1 (Belief)

Belief assigned to A ⊆ Θ is Bl ∶ 2Θ ↦ [0,1] where Bl(A) = ∑
B⊆A

m(B).

Definition 2 (Plausibility)

Plausibility assigned to A ⊆ Θ is Pl ∶ 2Θ ↦ [0,1] where Pl(A) = 1 −Bl(A).

Definition 3 (Commonality)

Commonality function of A ⊆ Θ is Q ∶ 2Θ ↦ [0,1] where Q(A) = ∑
A⊆B⊆Θ

m(B).

15/72

Preliminaries DST Conditionals

DST Conditionals
Definition 4 (Dempster’s conditional)

Conditional belief Bl(B∥A) ∶ 2Θ ↦ [0,1] of B given A is

Bl(B∥A) = Bl(A ∪B) −Bl(A)
1 −Bl(A)

, whenever Bl(A) ≠ 1, or equivalently, Pl(A) ≠ 0.

The conditional mass m(B∥A) ∶ 2Θ ↦ [0,1] of B given A is

m(B∥A) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
C⊆A

m(B ∪ C)

1 −Bl(A)
, for ∅ ≠ B ⊆ A;

0, otherwise.

Definition 5 (Fagin-Halpern (FH) conditional)

Conditional belief Bl(B∣A) of B given A is

Bl(B∣A) = Bl(A ∩B)
Bl(A ∩B) + Pl(A ∩B)

, whenever Bl(A) > 0.

16/72

Efficient Computation of Belief Theoretic Operations

Outline

1 Introduction

2 Preliminaries

3 Efficient Computation of Belief Theoretic Operations
REGAP: REcursive Generation of and Access to Propositions
DS-Vector
DS-Matrix
DS-Tree
Arbitrary Belief Computations
Arbitrary Plausibility and Commonality Computations
Experiments

4 DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals

5 DS-Conditional-All: Efficient and Exact Computation of All Conditionals

6 Operations on Dynamic Frames

7 Future Work
17/72

Efficient Computation of Belief Theoretic Operations REGAP: REcursive Generation of and Access to Propositions

REGAP: REcursive Generation of and Access to
Propositions
Start with {∅} element

Figure: REGAP: Start with {∅}.

Consider the FoD Θ = {θ0, θ1, . . . , θn−1}.

Suppose we desire to determine the belief potential associated with
A = {θk1 , θk2 , . . . , θk`

} ⊆ Θ.

The REGAP property allows us to recursively generate the propositions that
are relevant for this computation: Start with {∅}.

18/72

Efficient Computation of Belief Theoretic Operations REGAP: REcursive Generation of and Access to Propositions

REGAP
Insert singleton {θk1}

Figure: REGAP: Insert {θk1}.

First insert the singleton {θk1} ∈ A. Only one proposition is associated with
this singleton, viz.,

{∅} ∪ {θk1} = {θk1}.

19/72

Efficient Computation of Belief Theoretic Operations REGAP: REcursive Generation of and Access to Propositions

REGAP
Inser singleton {θk2}

Figure: REGAP: Insert {θk2}.

Next insert another singleton {θk2} ∈ A. The new propositions that are
associated with this singleton are

{∅} ∪ {θk2} = {θk2}, {θk1} ∪ {θk2} = {θk1 , θk2}.

20/72

Efficient Computation of Belief Theoretic Operations REGAP: REcursive Generation of and Access to Propositions

REGAP
Insert singleton {θk3}

Figure: REGAP: Insert {θk3}.

Inserting another singleton {θk3} ∈ A brings the new propositions

{∅} ∪ {θk3} = {θk3}, {θk1} ∪ {θk3} = {θk1 , θk3},
{θk2} ∪ {θk3} = {θk2 , θk3}, {θk1 , θk2} ∪ {θk3} = {θk1 , θk2 , θk3}.

In essence, the new propositions associated with a new singleton can be
recursively generated by adding the new singleton to each existing
proposition.

21/72

Efficient Computation of Belief Theoretic Operations REGAP: REcursive Generation of and Access to Propositions

REGAP
Generalized representation

Figure: REGAP = REcursive Generation of and Access to Propositions.

When A = Θ, REGAP generates the powerset of the FoD Θ.

These recursively generated propositions can be formulated as a vector, a
matrix, or a tree, and utilized to represent a dynamic BoE.

From now on, we use the following notation:

REGAP(A) = all the propositions that are required to compute Bl(A).

22/72

Efficient Computation of Belief Theoretic Operations DS-Vector

DS-Vector: Vector Representation of a Dynamic BoE

Figure: DS-Vector: Vector representation of a dynamic BoE.

Rectangles represent the recursive steps of dynamic BoE generation.

Propositions are represented by implicit contiguous indexes. So, no
memory allocation is needed to store a proposition.

Memory allocation is needed only to store the required belief potentials (or,
more generally, mass, belief, plausibility, or commonality values).

23/72

Efficient Computation of Belief Theoretic Operations DS-Matrix

DS-Matrix: Matrix Representation of a Dynamic BoE

Figure: DS-Matrix: Matrix representation of a dynamic BoE.
24/72

Efficient Computation of Belief Theoretic Operations DS-Tree

DS-Tree: Perfectly Balanced Binary Tree Representation of
a Dynamic BoE

Figure: DS-Tree: Perfectly balanced binary tree representation of a dynamic BoE.

25/72

Efficient Computation of Belief Theoretic Operations Arbitrary Belief Computations

Arbitrary Belief Computations
DS-Matrix Version

Figure: Belief Calculation: Propositions related to Bl(A) computation when
A = {θ0, θ3, θ4}, and Θ = {θ0, θ1, θ2, θ3, θ4}.

REGAP(A) generates the propositions relevant to the computation of Bl(A).

Belief computation is performed by accessing only the subset propositions.
Time complexity: O(2∣A∣).

26/72

Efficient Computation of Belief Theoretic Operations Arbitrary Belief Computations

Arbitrary Belief Computations
DS-Matrix Version

Figure: Belief Calculation: Propositions related to Bl(A) computation when
A = {θ0, θ3, θ4}, and Θ = {θ0, θ1, θ2, θ3, θ4}.

REGAP(A) generates those propositions relevant to the computation of
Bl(A).

Belief computation is performed by accessing only the subset propositions.
Time complexity: O(2∣A∣).

27/72

Efficient Computation of Belief Theoretic Operations Arbitrary Belief Computations

Arbitrary Belief Computations
DS-Matrix Version

Figure: Belief Calculation: Propositions related to Bl(A) computation when
A = {θ0, θ3, θ4}, and Θ = {θ0, θ1, θ2, θ3, θ4}.

REGAP(A) generates those propositions relevant to the computation of
Bl(A).

Belief computation is performed by accessing only the subset propositions.
Time complexity: O(2∣A∣).

28/72

Efficient Computation of Belief Theoretic Operations Arbitrary Belief Computations

Arbitrary Belief Computations
DS-Matrix Version

Figure: Belief Calculation: Propositions related to Bl(A) computation when
A = {θ0, θ3, θ4}, and Θ = {θ0, θ1, θ2, θ3, θ4}.

REGAP(A) generates those propositions relevant to the computation of
Bl(A).

Belief computation is performed by accessing only the subset propositions.
Time complexity: O(2∣A∣).

29/72

Efficient Computation of Belief Theoretic Operations Arbitrary Plausibility and Commonality Computations

Arbitrary Plausibility and Commonality Computations
DS-Matrix Version

Figure: Plausibility Calculation: Propositions related to Pl(A) computation when
A = {θ0, θ3, θ4}, and Θ = {θ0, θ1, θ2, θ3, θ4}.

Computing the plausibility Pl(A): Use REGAP(A) to compute Bl(A) and
use the equation Pl(A) = 1 −Bl(A).
Computing the commonality Q(A): Append the proposition A to all
propositions generated from REGAP(A) and apply the belief computation
algorithm.

30/72

Efficient Computation of Belief Theoretic Operations Experiments

Experiments
Average CPU time of accessing a proposition (µs)

FoD Size Max. ∣F∣ DS-Vector DS-Matrix List Struct.
2 3 0.379 0.393 0.465
4 15 0.400 0.412 0.510
6 63 0.410 0.454 0.739
8 255 0.443 0.449 1.541

10 1023 0.433 0.496 4.632
12 4095 0.465 0.493 16.906
14 16383 0.465 0.527 67.242
16 65535 0.495 0.517 268.443
18 262143 0.529 0.560 1124.0600
20 1048575 0.575 0.629 4609.3700

Machine used: Macintosh desktop computer running Mac OS X 10.11.3, with
2.9GHz Intel Core i5 processor and 8GB of 1600MHz DDR3 RAM.

For each FoD size, the core of focal elements was randomly chosen.

DST operation was computed for 100,000 randomly chosen propositions from the
FoD.

31/72

Efficient Computation of Belief Theoretic Operations Experiments

Experiments
Average CPU time of belief computation (µs)

FoD Size Max. ∣F∣ DS-Vector DS-Matrix List Struct.
2 3 0.373 0.362 0.450
4 15 0.378 0.376 0.531
6 63 0.415 0.450 0.833
8 255 0.453 0.508 1.779

10 1023 0.525 0.663 5.529
12 4095 0.655 0.923 20.757
14 16383 0.884 1.314 81.196
16 65535 1.340 2.159 325.930
18 262143 2.107 3.510 1373.110
20 1048575 3.963 6.210 5448.170

A new computational library, which we refer to as BCL (Belief Computation
Library) 16 is developed and utilized in the simulations 17.

32/72

DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals

Outline

1 Introduction

2 Preliminaries

3 Efficient Computation of Belief Theoretic Operations

4 DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals
Theoretical Foundation
DS-Conditional-One Computational Model

5 DS-Conditional-All: Efficient and Exact Computation of All Conditionals

6 Operations on Dynamic Frames

7 Future Work

33/72

DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals Theoretical Foundation

Alternate Expressions for Conditionals

S(A; B) = ∑
∅≠C⊆A;
∅≠D⊆B

m(C ∪D) Sum of all masses of propositions that ‘straddle’ both A ⊆ Θ and
B ⊆ Θ.

T (A; B) = ∑
C⊆A

m(C ∪B) Sum of all masses of propositions in A ⊆ Θ that strictly ‘straddle’
proposition B ⊆ Θ.

Proposition 1

Take A ⊆ Θ. For B ⊆ Θ, consider the mappings ΓA ∶ 2Θ ↦ [0,1] and
ΠA ∶ 2Θ ↦ [0,1], where

ΓA(B) = ∑
∅≠X⊆A

m((A ∩B) ∪X) and ΠA(B) = ∑
Y⊆(A∩B)

ΓA(Y).

Then the following are true:
ΓA(A ∩B) = ΓA(B) and ΠA(A ∩B) = ΠA(B). So, w.l.o.g., take B ⊆ A.
ΓA(∅) = ΠA(∅) = Bl(A).
ΓA(B) = T (A; A ∩B) −m(A ∩B).
ΠA(B) = ΠA(∅) + S(A; A ∩B).

34/72

DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals Theoretical Foundation

Alternate Expressions for Conditionals
We use the DS-Conditional-One computational model to compute the following:

Dempster’s and FH conditional beliefs of an arbitrary proposition.
Dempster’s conditional masses of an arbitrary proposition.

To proceed, we employ the following alternate expressions:

Proposition 2 (Propositions for Dempster’s Conditional Belief and Mass)

Take A ⊆ Θ s.t. Bl(A) ≠ 1. Then, Bl(B∥A) and m(B∥A) can be expressed as

Bl(B∥A) = Bl(A ∩B) + S(A; A ∩B)
1 −Bl(A)

; m(B∥A) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T (A; A ∩B)
1 −Bl(A)

, for ∅ ≠ B ⊆ A;

0, otherwise.

Proposition 3 (Propositions for FH Conditional Belief)

Take A ⊆ Θ s.t. Bl(A) > 0. Then, Bl(B∣A) can be expressed as

Bl(B∣A) = Bl(A ∩B)
1 −Bl(A) − S(A; A ∩B)

.

35/72

DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals DS-Conditional-One Computational Model

DS-Conditional-One Computational Model

Note that we need only the following four quantities to compute the
Dempster’s conditional beliefs/masses and FH conditional beliefs:

Bl(A)
´¹¹¹¹¸¹¹¹¹¶

REGAP(A)

; Bl(A ∩B)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
REGAP(A∩B)

; S(A; A ∩B);
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

REGAP(A)⊗REGAP(A∩B)

T (A; A ∩B).
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(REGAP(A)⊗(A∩B))+(A∩B)

To explain how the DS-Conditional-One model allows us to easily identify
these quantities, let

FoD: Θ = {θ0, θ1, . . . , θn−1};
conditioning proposition: A = {a0, a1, . . . , a∣A∣−1}, ai ∈ Θ;
its complement: A = {α0, α1, . . . , α∣A∣−1}, αi ∈ Θ;

conditioned proposition: B = {a0, a2}.

36/72

DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals DS-Conditional-One Computational Model

DS-Conditional-One Computational Model

Construct the DS-Matrix as follows:
First row: conditioning proposition A = {a0, a1, . . . , a∣A∣−1}.
First column: its complement A = {α0, α1, . . . , α

∣A∣−1}.

We can now directly identify
REGAP(A ∩B),
REGAP(A),
REGAP(A)⊗REGAP(A ∩B),
(REGAP(A)⊗(A∩B))+(A∩B).

We can also directly identify
REGAP(A),
REGAP(A)⊗REGAP(A),
ΓA(C), ∀C ⊆ B.

37/72

DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals DS-Conditional-One Computational Model

DS-Conditional-One Computational Model

Construct the DS-Matrix as follows:
First row: conditioning proposition A = {a0, a1, . . . , a∣A∣−1}.
First column: its complement A = {α0, α1, . . . , α

∣A∣−1}.

We can now directly identify
REGAP(A ∩B),
REGAP(A),
REGAP(A)⊗REGAP(A ∩B),
(REGAP(A)⊗(A∩B))+(A∩B).

We can also directly identify
REGAP(A),
REGAP(A)⊗REGAP(A),
ΓA(C), ∀C ⊆ B.

38/72

DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals DS-Conditional-One Computational Model

DS-Conditional-One Computational Model

Construct the DS-Matrix as follows:
First row: conditioning proposition A = {a0, a1, . . . , a∣A∣−1}.
First column: its complement A = {α0, α1, . . . , α

∣A∣−1}.

We can now directly identify
REGAP(A ∩B),
REGAP(A),
REGAP(A)⊗REGAP(A ∩B),
(REGAP(A)⊗(A∩B))+(A∩B).

We can also directly identify
REGAP(A),
REGAP(A)⊗REGAP(A),
ΓA(C), ∀C ⊆ B.

39/72

DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals DS-Conditional-One Computational Model

DS-Conditional-One Computational Model

Construct the DS-Matrix as follows:
First row: conditioning proposition A = {a0, a1, . . . , a∣A∣−1}.
First column: its complement A = {α0, α1, . . . , α

∣A∣−1}.

We can now directly identify
REGAP(A ∩B),
REGAP(A),
REGAP(A)⊗REGAP(A ∩B),
(REGAP(A)⊗(A∩B))+(A∩B).

We can also directly identify
REGAP(A),
REGAP(A)⊗REGAP(A),
ΓA(C), ∀C ⊆ B.

40/72

DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals DS-Conditional-One Computational Model

DS-Conditional-One Computational Model

Construct the DS-Matrix as follows:
First row: conditioning proposition A = {a0, a1, . . . , a∣A∣−1}.
First column: its complement A = {α0, α1, . . . , α

∣A∣−1}.

We can now directly identify
REGAP(A ∩B),
REGAP(A),
REGAP(A)⊗REGAP(A ∩B),
(REGAP(A)⊗(A ∩B)) + (A ∩B).

We can also directly identify
REGAP(A),
REGAP(A)⊗REGAP(A),
ΓA(C), ∀C ⊆ B.

41/72

DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals DS-Conditional-One Computational Model

DS-Conditional-One Computational Model

Construct the DS-Matrix as follows:
First row: conditioning proposition A = {a0, a1, . . . , a∣A∣−1}.
First column: its complement A = {α0, α1, . . . , α

∣A∣−1}.

We can now directly identify
REGAP(A ∩B),
REGAP(A),
REGAP(A)⊗REGAP(A ∩B),
(REGAP(A)⊗(A∩B))+(A∩B).

We can also directly identify
REGAP(A),
REGAP(A)⊗REGAP(A),
ΓA(C), ∀C ⊆ B.

42/72

DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals DS-Conditional-One Computational Model

DS-Conditional-One Computational Model

Construct the DS-Matrix as follows:
First row: conditioning proposition A = {a0, a1, . . . , a∣A∣−1}.
First column: its complement A = {α0, α1, . . . , α

∣A∣−1}.

We can now directly identify
REGAP(A ∩B),
REGAP(A),
REGAP(A)⊗REGAP(A ∩B),
(REGAP(A)⊗(A∩B))+(A∩B).

We can also directly identify
REGAP(A),
REGAP(A)⊗REGAP(A),
ΓA(C), ∀C ⊆ B.

43/72

DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals DS-Conditional-One Computational Model

DS-Conditional-One Computational Model

Look at Propositions 2 and 3.

Use To Compute Complexity

Time Space

Dempster’s and FH Conditional Belief of an Arbitrary Proposition:

(1) REGAP(A ∩B) Bl(A ∩B) O(2∣A∩B∣) O(2∣Θ∣)

(2) REGAP(A) Bl(A) = ΓA(∅) O(2∣A∣) O(2∣Θ∣)

(3) REGAP(A)⊗REGAP(A ∩B) S(A; A ∩B) O(2∣A∣+∣A∩B∣
) O(2∣Θ∣)

Dempster’s Conditional Mass of an Arbitrary Proposition:

(2) REGAP(A) Bl(A) = ΓA(∅) O(2∣A∣) O(2∣Θ∣)

(4) (REGAP(A)⊗(A ∩B)) + (A ∩B) T (A; A ∩B) O(max(2∣A∣, ∣A ∩B∣)) O(2∣Θ∣)

44/72

DS-Conditional-All: Efficient and Exact Computation of All Conditionals

Outline

1 Introduction

2 Preliminaries

3 Efficient Computation of Belief Theoretic Operations

4 DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals

5 DS-Conditional-All: Efficient and Exact Computation of All Conditionals
Theoretical Foundation
DS-Conditional-All Computational Model
Experiments

6 Operations on Dynamic Frames

7 Future Work

45/72

DS-Conditional-All: Efficient and Exact Computation of All Conditionals Theoretical Foundation

Alternate Expressions for Conditionals

We use DS-Conditional-All computational model to compute the following:
Dempsters’ and FH conditional beliefs of all propositions,
Dempsters’ conditional masses of all propositions.

Proposition 4 (Propositions for Dempster’s Conditional Belief and Mass)

Take A ⊆ Θ s.t. Bl(A) ≠ 1. Then, Bl(B∥A) and m(B∥A) can be expressed as

Bl(B∥A) = Bl(A ∩B) +ΠA(A ∩B) − ΓA({∅})
1 − ΓA({∅})

; m(B∥A) = m(A ∩B) + ΓA(A ∩B)
1 − ΓA({∅})

.

Proposition 5 (Propositions for FH Conditional Belief)

Take A ⊆ Θ s.t. Bl(A) > 0. Then, Bl(B∣A) can be expressed as

Bl(B∣A) = Bl(A ∩B)
1 −ΠA(A ∩B)

.

46/72

DS-Conditional-All: Efficient and Exact Computation of All Conditionals DS-Conditional-All Computational Model

DS-Conditional-All Model
Construct the DS-Matrix as
before with
A = {a0, a1, . . . , a∣A∣−1} and
A = {α0, α1, . . . , α∣A∣−1}.
Utilize the fast Möbius
transformation (FMT)18,19.
Perform following
computations:
ΓA(B), ∀B ⊆ A,
ΠA(B) values from
ΓA(B), ∀B ⊆ A,
Bl(B) values from BBA
m(B), ∀B ⊆ A.

47/72

DS-Conditional-All: Efficient and Exact Computation of All Conditionals DS-Conditional-All Computational Model

DS-Conditional-All Model
Construct the DS-Matrix as
before with
A = {a0, a1, . . . , a∣A∣−1} and
A = {α0, α1, . . . , α∣A∣−1}.
Utilize the fast Möbius
transformation (FMT)18,19.
Perform following
computations
ΓA(B), ∀B ⊆ A,
ΠA(B) values from
ΓA(B), ∀B ⊆ A,
Bl(B) values from BBA
m(B), ∀B ⊆ A.

48/72

DS-Conditional-All: Efficient and Exact Computation of All Conditionals DS-Conditional-All Computational Model

DS-Conditional-All Model
Construct the DS-Matrix as
before with
A = {a0, a1, . . . , a∣A∣−1} and
A = {α0, α1, . . . , α∣A∣−1}.
Utilize the fast Möbius
transformation (FMT)18,19.
Perform following
computations
ΓA(B), ∀B ⊆ A,
ΠA(B) values from
ΓA(B), ∀B ⊆ A,
Bl(B) values from BBA
m(B), ∀B ⊆ A.

49/72

DS-Conditional-All: Efficient and Exact Computation of All Conditionals DS-Conditional-All Computational Model

DS-Conditional-All Model
Construct the DS-Matrix as
before with
A = {a0, a1, . . . , a∣A∣−1} and
A = {α0, α1, . . . , α∣A∣−1}.
Utilize the fast Möbius
transformation (FMT)18,19.
Perform following
computations
ΓA(B), ∀B ⊆ A,
ΠA(B) values from
ΓA(B), ∀B ⊆ A,
Bl(B) values from BBA
m(B), ∀B ⊆ A.

50/72

DS-Conditional-All: Efficient and Exact Computation of All Conditionals DS-Conditional-All Computational Model

DS-Conditional-All Model
Construct the DS-Matrix as
before with
A = {a0, a1, . . . , a∣A∣−1} and
A = {α0, α1, . . . , α∣A∣−1}.
Utilize the fast Möbius
transformation (FMT)18,19.
Perform following
computations
ΓA(B), ∀B ⊆ A,
ΠA(B) values from
ΓA(B), ∀B ⊆ A,
Bl(B) values from BBA
m(B), ∀B ⊆ A.

51/72

DS-Conditional-All: Efficient and Exact Computation of All Conditionals DS-Conditional-All Computational Model

DS-Conditional-All Computational Model

Look at Propositions 4 and 5.

Use To Compute Complexity

Time Space

Dempster’s and FH Conditional Beliefs of All Propositions:

REGAP(A) Bl(A) = ΓA(∅) = ΠA(∅) O(2∣A∣) O(2∣Θ∣)

(1) REGAP(A)⊗B, ∀B ⊆ A ΓA(B), ∀B ⊆ A O(2∣Θ∣) O(2∣Θ∣)

(2) REGAP(A) ΠA(B), ∀B ⊆ A from the FMT O(2∣A∣ × ∣A∣) O(2∣A∣)

(3) REGAP(A) Bl(B), ∀B ⊆ A from the FMT O(2∣A∣ × ∣A∣) O(2∣A∣)

Dempster’s Conditional Mass of an Arbitrary Proposition:

REGAP(A) Bl(A) = ΓA(∅) = ΠA(∅) O(2∣A∣) O(2∣Θ∣)

(1) REGAP(A)⊗B, ∀B ⊆ A ΓA(B), ∀B ⊆ A O(2∣Θ∣) O(2∣Θ∣)

52/72

DS-Conditional-All: Efficient and Exact Computation of All Conditionals Experiments

Experiments

(a) ∣Θ∣ = 10 (b) ∣Θ∣ = 20 (c) ∣Θ∣ = 30

Figure: CPU time for arbitrary FH (Dempster’s) belief conditional computation versus ∣A∣
for different ∣B∣ values (when ∣Θ∣ = 10, ∣Θ∣ = 20, and ∣Θ∣ = 30).

For a given FoD size, we selected a random set of focal elements, with
randomly selected mass values, and conducted 10,000 conditional
computations for randomly chosen propositions A and B ⊆ A.

53/72

DS-Conditional-All: Efficient and Exact Computation of All Conditionals Experiments

Experiments
Method → DS-Conditional-One Model
Conditional → FH or Dempster’s Dempster’s

Bl(B∣A) Bl(B∣A) m(B∣A)
FoD or Bl(B∥A) or Bl(B∥A) or m(B∥A) m(B∥A)

∣Θ∣ Max. ∣F∣ (Arbitrary) (All) (All) (Arbitrary)
2 3 0.0008 0.0016 0.0024 0.0008
4 15 0.0008 0.0057 0.0068 0.0008
6 63 0.0009 0.0189 0.0208 0.0009
8 255 0.0011 0.0707 0.0758 0.0010

10 1,023 0.0016 0.3038 0.3208 0.0012
12 4,095 0.0033 1.5535 1.6206 0.0016
14 16,383 0.0095 15.0000 17.1429 0.0030
16 65,535 0.0323 131.8750 136.8750 0.0074
18 262,143 0.1223 1,072.2200 1,077.7800 0.0218
20 1,048,575 0.4724 8,670.0000 8,698.0000 0.0771
22 4,194,303 3.1889 71,115.9000 73,942.3000 0.2853
24 16,777,215 18.7807 653,268.0000 660,883.0000 0.6467
26 67,108,863 83.0787 1.6334 cpu hours 1.6915 cpu hours 1.1744
28 268,435,455 338.2960 *** *** 31.2735
30 1,073,741,823 1,509.5000 *** *** 111.2910

Table: DS-Conditional-One model. Average computational times with DS-COCA library
(ms) (*** denotes computations not completed within a feasible time or space
requirement. Conditional computations for larger FoDs were done a supercomputer
(https://ccs.miami.edu/pegasus) (underlined in Tables)).

54/72

https://ccs.miami.edu/pegasus

DS-Conditional-All: Efficient and Exact Computation of All Conditionals Experiments

Experiments
Method → DS-Conditional-All Model Specialization Mat.
Conditional → FH or Dempster’s Dempster’s Dempster’s

Bl(B∣A) m(B∣A)
FoD or Bl(B∥A) or m(B∥A) m(B∥A) m(B∥A)

∣Θ∣ Max. ∣F∣ (All) (All) (All) (All)
2 3 0.0011 0.0014 0.0015 0.0015
4 15 0.0014 0.0018 0.0020 0.0070
6 63 0.0026 0.0034 0.0031 0.0767
8 255 0.0067 0.0091 0.0054 1.1264

10 1,023 0.0211 0.0303 0.0135 98.4795
12 4,095 0.0770 0.1133 0.0427 1,581.8300
14 16,383 0.2950 0.4378 0.1532 24,847.0000
16 65,535 1.1592 1.7243 0.5814 396,860.0000
18 262,143 6.5901 9.2096 2.3430 1.7637 cpu hours
20 1,048,575 26.7221 39.0397 9.3537 ***
22 4,194,303 112.4180 166.0070 43.5348 ***
24 16,777,215 500.3420 689.8700 233.6080 ***
26 67,108,863 2,239.2400 2,908.7000 1,118.9500 ***
28 268,435,455 9,273.8100 12,406.4000 4,976.9700 ***
30 1,073,741,823 42,087.2000 52,055.8000 25,354.9000 ***

Table: DS-Conditional-All model versus specialization matrix based method. Average
computational times (ms) (*** denotes computations not completed within a feasible
time or space requirement. Conditional computations for larger FoDs were done a
supercomputer (https://ccs.miami.edu/pegasus) (underlined in Tables)).

55/72

https://ccs.miami.edu/pegasus

DS-Conditional-All: Efficient and Exact Computation of All Conditionals Experiments

Time and Space Complexity Comparison

.

Figure: Time and space complexity comparison of DS-Conditional-One (or
DS-Conditional-All) model with the specialization matrix approach (Theoretical
computational times calculated assuming 10,000,000 iterations per second). 56/72

DS-Conditional-All: Efficient and Exact Computation of All Conditionals Experiments

Important Remarks

Reasons for significant performance in
performance:

Smaller matrix size (corresponding
to the BoE only).

No matrix multiplications (only
additions are involved).

Repetitive computations avoided.

Access operation of a focal element
takes only constant time.

An outcome of this research:
DS-COCA library20. Figure: Best use of DST conditional

computation models.
These models can also be used for the following purposes:

Visualization and analysis of the conditional computation process.
Real-time evidence fusion and uncertainty reasoning applications 21.

57/72

Operations on Dynamic Frames

Outline

1 Introduction

2 Preliminaries

3 Efficient Computation of Belief Theoretic Operations

4 DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals

5 DS-Conditional-All: Efficient and Exact Computation of All Conditionals

6 Operations on Dynamic Frames

7 Future Work

58/72

Operations on Dynamic Frames

Operations on Dynamic Frames: Removing Singleton

Figure: DS-Vector

Figure: DS-Matrix

Figure: DS-Tree
59/72

Future Work

Outline

1 Introduction

2 Preliminaries

3 Efficient Computation of Belief Theoretic Operations

4 DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals

5 DS-Conditional-All: Efficient and Exact Computation of All Conditionals

6 Operations on Dynamic Frames

7 Future Work
DST Fusion Strategies
Baseline Network Selection in Interferometric Synthetic Aperture Radar (InSAR)
Effective DST Visualizations
Computational Libraries

60/72

Future Work DST Fusion Strategies

DST Fusion Strategies

An efficient algorithm for the Dempster’s Combination Rule (DCR).
Address DCR’s limitations regarding conflicting evidence.
Develop an effective strategy to apply the DCR to multiple BoEs.

Figure: DCR for 2 BoEs.

X

Figure: DST conjunctive combination of 2
BoEs.

61/72

Future Work DST Fusion Strategies

DST Fusion Strategies

X

X X

X X

X X X X

X X

X X X X

X X X X

X X X X X X X X

Figure: Visualization of conflicting evidence in
DCR.

X

X X

X X

X X X X

X X

X X X

X X

X

X X X X

X X X

X X X

X X X

X

X

X

X X X X

X

X X

X X

X X X X

X X

X X

X X X X

X X X X

Figure: DCR for 3 BoEs.

62/72

Future Work DST Fusion Strategies

DST Fusion Strategies

We are also working on developing efficient algorithms for the following DST
fusion strategies:

Conditional Update Equation (CUE) 22.
Conditional Fusion Equation (CFE) 23.
Pignistic transformation 24.

We plan to develop efficient algorithms and data structures to work with
special low density BoEs:

Dirichlet belief functions 25.
Consonant belief functions 8.
Single focal element (SFE) BoEs.
Other low density BoEs.

We are conducting a wide range of experiments with dynamic operations to
improve the computational performance.

63/72

Future Work Baseline Network Selection in Interferometric Synthetic Aperture Radar (InSAR)

Baseline Network Selection in InSAR

Synthetic aperture radar interferometry (InSAR)26 is an important technique
that can measure terrain deformation with high precision.

InSAR finds application include geophysical monitoring, including
earthquakes, volcanic eruptions, landslides, and hydrological subsidence27,28.

We plan to use our newly developed algorithms and data structures to
develop an efficient selection criterion to identify the best baseline network,
which is a primary component in InSAR processing.

We have already conducted two research studies:

Network selection using centrality concepts 29.

Identifying higher quality networks using deep learning 30 techniques.

Both these initial steps have yielded promising results.

64/72

Future Work Baseline Network Selection in Interferometric Synthetic Aperture Radar (InSAR)

Baseline Network Selection in InSAR

Figure: Network selection using flow-betweenness centrality. (a)-(d) Network of baseline
history. (e)-(h) Network of interferograms. (i)-(l) Map of temporal coherence.

65/72

Future Work Baseline Network Selection in Interferometric Synthetic Aperture Radar (InSAR)

Baseline Network Selection in InSAR

1200 networks were used to
train and test the AI
prototype of network quality
measurement.
Each network contains 5 blue
and 5 green nodes.
The value of the edges
between the same color nodes
is +1 and otherwise -1.
The trained AI prototype
gave 99.3% accuracy.
The ongoing challenging task
is to adapt uncertainty
reasoning capabilities for a
robust strategy for practical
InSAR processing. Figure: Six out of 1200 networks used in the deep

learning strategy.
66/72

Future Work Effective DST Visualizations

Effective DST Visualizations

Figure: DS-LASIC (DS-Layered
Symmetric Clustering) Diagram:
Dynamic BoE representation as a layered
symmetric clustering diagram when ∣Θ∣ = 9.

Figure: DS-TRISEV (DS-Three
Dimensional Spring Electrical
Visualization) Model: 3D dynamic BoE
representation using spring electrical 31

model when ∣Θ∣ = 9.
67/72

Future Work Computational Libraries

Computational Libraries

(a) BCL: Belief Computation
Library 16

(b) CCL: Conditional Compu-
tation Library 32

(c) DS-COCA Library:
DS-Conditional-One and
DS-Conditional-All 20

These libraries are being improved and computational libraries for other
findings are being developed.

68/72

References I

[1] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai,
A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of Go without human knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, Oct. 2017.

[2] Y. Leviathan and Y. Matias, “Google Duplex: An AI System for Accomplishing Real-World Tasks Over the
Phone,” May 2018. [Online]. Available:
https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html

[3] Y. Liu, K. Gadepalli, M. Norouzi, G. E. Dahl, T. Kohlberger, A. Boyko, S. Venugopalan, A. Timofeev, P. Q.
Nelson, G. S. Corrado, J. D. Hipp, L. Peng, and M. C. Stumpe, “Detecting Cancer Metastases on Gigapixel
Pathology Images,” CoRR, vol. abs/1703.0, Mar. 2017. [Online]. Available: http://arxiv.org/abs/1703.02442

[4] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous vehicles: opportunities, barriers and
policy recommendations,” Transportation Research Part A: Policy and Practice, vol. 77, pp. 167–181, July
2015.

[5] NHTSA, “Tesla Crash Preliminary Evaluation Report : The Office of Defects Investigation (ODI) PE 16-007,”
U.S. Department of Transportation, National Highway Traffic Safety Administration, Washington, DC, Tech.
Rep., Jan. 2017. [Online]. Available: https://static.nhtsa.gov/odi/inv/2016/INCLA-PE16007-7876.pdf

[6] R. R. Yager and L. Liu, Eds., Classic Works of the Dempster-Shafer Theory of Belief Functions. Berlin
Heidelberg: Springer-Verlag, 2008.

[7] A. P. Dempster, “Upper and lower probabilities induced by a multivalued mapping,” Ann. Math. Stat., vol. 38,
no. 2, pp. 325–339, Apr. 1967.

[8] G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ: Princeton Univ. Press, 1976.
[9] P. Smets and R. Kennes, “The transferable belief model,” Artif. Intell., vol. 66, no. 2, pp. 191–234, Apr. 1994.

[10] J. Kohlas and P.-A. Monney, A Mathematical Theory of Hints, 1st ed. Berlin Heidelberg: Springer-Verlag,
1995, vol. 425.

[11] P. Orponen, “Dempster’s Rule of Combination is #P-complete,” Artif. Intell., vol. 44, no. 1-2, pp. 245–253,
July 1990.

69/72

https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html
http://arxiv.org/abs/1703.02442
https://static.nhtsa.gov/odi/inv/2016/INCLA-PE16007-7876.pdf

References II

[12] T. Denœux, “40 years of Dempster-Shafer theory,” Int. J. Approx. Reason., vol. 79, no. C, pp. 1–6, Dec. 2016.
[13] R. Fagin and J. Y. Halpern, “A new approach to updating beliefs,” in Proc. 6th Conf. Uncertainty in Artificial

Intelligence (UAI), Cambridge, MA, July 1990, pp. 347–374.
[14] P. Smets, “The application of the matrix calculus to belief functions,” Int. J. Approx. Reason., vol. 31, no.

1-2, pp. 1–30, Oct. 2002.
[15] T. L. Wickramarathne, K. Premaratne, and M. N. Murthi, “Toward efficient computation of the

Dempster-Shafer belief theoretic conditionals,” IEEE Trans. Cybern., vol. 43, no. 2, pp. 712–724, Apr. 2013.
[16] ProFuSELab, “Belief Computation Library,” 2016. [Online]. Available:

https://github.com/ProFuSELab/Belief-Computation-Library
[17] L. G. Polpitiya, K. Premaratne, M. N. Murthi, and D. Sarkar, “A framework for efficient computation of belief

theoretic operations,” in Proc. 19th Int. Conf. Information Fusion (FUSION), Heidelberg, Germany, July 2016,
pp. 1570–1577.

[18] H. M. Thoma, “Factorization of Belief Functions,” Ph.D. dissertation, Dept. Stat., Harvard Univ., Cambridge,
MA, 1989.

[19] R. Kennes and P. Smets, “Fast algorithms for Dempster-Shafer theory,” in Proc. 3rd Int. Conf. Information
Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), Paris, France, July 1990,
pp. 14–23.

[20] ProFuSELab, “DS-COCA: DS-Conditional-One and DS-Conditional-All in C++,” 2018. [Online]. Available:
https://profuselab.github.io/DS-COCA/

[21] L. G. Polpitiya, K. Premaratne, M. N. Murthi, and D. Sarkar, “Efficient computation of belief theoretic
conditionals,” in Proc. 10th Int. Symp. Imprecise Probability: Theories and Applications (ISIPTA), Lugano,
Switzerland, July 2017, pp. 265–276.

[22] K. Premaratne, M. Murthi, J. Zhang, M. Scheutz, and P. Bauer, “A Dempster-Shafer theoretic conditional
approach to evidence updating for fusion of hard and soft data,” in Proc. 12th Int. Conf. Information Fusion
(FUSION), Seattle, WA, July 2009, pp. 2122–2129.

70/72

https://github.com/ProFuSELab/Belief-Computation-Library
https://profuselab.github.io/DS-COCA/

References III

[23] T. L. Wickramarathne, K. Premaratne, and M. N. Murthi, “Consensus-Based Credibility Estimation of Soft
Evidence for Robust Data Fusion,” in Proc. 2nd Int. Conf. Belief Functions (BELIEF), Compiègne, France,
May 2012, pp. 301–309.

[24] P. Smets, “Decision Making in a Context where Uncertainty is Represented by Belief Functions,” in Belief
functions in business decisions, R. P. Srivastava and T. J. Mock, Eds. Heidelberg, Germany: Physica-Verlag,
2002, vol. 88, ch. 2, pp. 17–61.

[25] A. Jøsang and Z. Elouedi, “Interpreting Belief Functions as Dirichlet Distributions,” in Proc. European Conf.
Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU), Hammamet, Tunisia, Oct.
2007, pp. 393–404.

[26] R. F. Hanssen, Radar Interferometry - Data Interpretation and Error Analysis, ser. Remote Sensing and Digital
Image Processing. Dordrecht, The Netherlands: Kluwer Academic, 2001, vol. 2.

[27] S. Jónsson, H. Zebker, P. Cervelli, P. Segall, H. Garbeil, P. Mouginis-Mark, and S. Rowland, “A
shallowâĂŘdipping dike fed the 1995 flank eruption at Fernandina Volcano, Galápagos, observed by satellite
radar interferometry,” Geophys. Res. Lett., vol. 26, no. 8, pp. 1077–1080, Apr. 1999.

[28] F. Amelung, S. Jónsson, H. Zebker, and P. Segall, “Widespread uplift and âĂŸtrapdoor’ faulting on Galápagos
volcanoes observed with radar interferometry,” Nature, vol. 407, no. 6807, pp. 993–996, Oct. 2000.

[29] M. Newman, Networks, 1st ed. New York: Oxford Univ. Press, 2010.
[30] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015.
[31] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing by force-directed placement,” Software: Practice

and Experience, vol. 21, no. 11, pp. 1129–1164, Nov. 1991.
[32] ProFuSELab, “Conditional Computation Library,” 2017. [Online]. Available:

https://profuselab.github.io/Conditional-Computation-Library/

71/72

https://profuselab.github.io/Conditional-Computation-Library/

Thank You!
Questions?

72/72

	Introduction
	Reasoning Under Uncertainty: The Role of Dempster-Shafer (DS) Belief Theory
	Motivation
	Challenges
	Contributions

	Preliminaries
	DST Basic Notions
	Belief, Plausibility and Commonality
	DST Conditionals

	Efficient Computation of Belief Theoretic Operations
	REGAP: REcursive Generation of and Access to Propositions
	DS-Vector
	DS-Matrix
	DS-Tree
	Arbitrary Belief Computations
	Arbitrary Plausibility and Commonality Computations
	Experiments

	DS-Conditional-One: Efficient and Exact Computation of Arbitrary Conditionals
	Theoretical Foundation
	DS-Conditional-One Computational Model

	DS-Conditional-All: Efficient and Exact Computation of All Conditionals
	Theoretical Foundation
	DS-Conditional-All Computational Model
	Experiments

	Operations on Dynamic Frames
	Future Work
	DST Fusion Strategies
	Baseline Network Selection in Interferometric Synthetic Aperture Radar (InSAR)
	Effective DST Visualizations
	Computational Libraries

