
A Framework for Efficient Computation of Belief
Theoretic Operations

Lalintha G. Polpitiya∗, Kamal Premaratne∗, Manohar N. Murthi∗, Dilip Sarkar†
∗Department of Electrical and Computer Engineering

†Department of Computer Science
University of Miami

Coral Gables, Florida, USA
lalintha@umiami.edu, {kamal, mmurthi, sarkar}@miami.edu

Abstract—The Dempster-Shafer (DS) theory is a powerful
general framework for reasoning under uncertainty. While the
strength of the DS theoretic (DST) framework in its ability to
handle a wider variety of data imperfections is not in dispute,
a major criticism cast towards DST evidential reasoning is the
heavy computational burden it entails. If the advantages offered
by DS theory is to be fully realized, it is essential that one explores
efficient data structures and algorithms that can be used for DST
operations and computations. In this paper, we wish to present a
novel generalized computational framework for exactly this pur-
pose. We develop three representations — DS-Vector, DS-Matrix,
and DS-Tree — which allow DST computation to be performed
in significantly less time. These three representations can also
be utilized as tools for visualizing DST models. A new strategy,
which we refer to as REGAP, which allows REcursive Generation
of and Access to Propositions is introduced and harnessed in the
development of this framework and computational algorithms.
The paper also provides a discussion and experimental validation
of the utility, efficiency, and implementation of the proposed data
structures and algorithms.

Index Terms—Dempster-Shafer theory, belief functions, evi-
dential reasoning, computational frameworks, data structures,
algorithms.

I. INTRODUCTION

The Dempster-Shafer (DS) theory of belief functions, also
referred to as evidence theory, was first introduced by Demp-
ster [1], [2] in the context of statistical inference. It was
later developed by Shafer [3] into a general framework for
uncertainty modeling. In the years since this earlier work, DS
theory has been further developed and it has been identified as
a framework for handling a wide variety of data imperfections,
providing elegant solutions to real world problems [4], [5]. It
has been transformed into an important computational tool for
evidential reasoning in numerous application scenarios (e.g.,
expert systems) [6].

DS theory offers greater expressiveness and flexibility in
evidential reasoning under uncertainty [7]. However, these
advantages come at a cost: DS theoretic (DST) operations
involve an additional cost in terms of higher computational
complexity, especially when compared to methods based on
the classical probability theory [8]. So, a major challenge
for harnessing the advantages of DS theory in practice is
to overcome this computational complexity, especially when
working with large frames of discernment.

We do not believe that the present literature has given due
attention to this issue [4], [6]. There is no widely accepted
computationally feasible generalized framework to represent
DST models and carry out DST operations. A thoughtful
discussion about data structures and algorithms for efficient
DST computations is still lacking. The development of an
efficient computational framework is of critical importance if
we are to harness the strengths of DS theory and make it more
widely applicable in practice and in real-world scenarios.

DST implementations in current use are limited to compu-
tations on smaller frames of discernment, and they lack the
ability to handle larger frames mainly due to the prohibitive
computational burden they engender. A review of current
implementations and applications [4], [6], [9] confirms that
work is needed to overcome these computational limitations.

The work in this paper is an attempt to fill the void between
what DS theory can offer and its practical implementation. For
this purpose, we introduce a novel generalized computational
framework where we develop three different representations
— DS-Vector, DS-Matrix, and DS-Tree — which offer sig-
nificantly greater computational capability for representation
of DST models and DST operations. They also act as simple
tools for visualization of DST models and the complex nature
of the computations involved. A strategy, which we refer to as
REGAP (REcursive Generation of and Access to Propositions),
is developed and used in our development of this computa-
tional framework. Relevant data structures and generalized
algorithms to work with the framework are discussed and
compared in the paper.

Popular approaches to represent a focal element (i.e., a
proposition which receives DST ‘support’) are the use of a bit-
string [10]–[12] or an integer [13]. Binary representation has
been used in combination, marginalization, and projection of
multivariate belief functions [14], [15]. Binary representation
has also been used to express the belief computation formulas
using matrix calculus [16] and in fusion algorithm implemen-
tations [17]. In this paper, we introduce an implicit index
calculation mechanism to represent a focal element, which re-
duces memory usage and significantly improves computational
performance.

In order to address the high computational complexity of
belief value (or belief potential) calculations, several approx-

19th International Conference on Information Fusion
Heidelberg, Germany - July 5-8, 2016

978-0-9964527-4-8©2016 ISIF

imation methods have also been developed. Most of these
approximation algorithms provide lower bounds which are
obtained by removing some of the focal elements with or
without redistributing the corresponding belief potentials [18]–
[22]. More sophisticated methods produce lower and upper
bounds , thus improving the quality of the approximation [23],
[24]. These methods provide approximate and not exact belief
potentials. A fast Möbius transform, which is analogous to
the fast Fourier transform (FFT), has also been developed
toward efficient DST computations [10], [11], [25]. It is worth
pointing out that Shafer has stated, “It remains to be seen how
useful the fast Möbius transform will be in practice. It is clear,
however, that it is not enough to make arbitrary belief function
computations feasible.” [7, p.348]. Using the REGAP strategy,
we introduce a new approach to identify propositions that are
relevant to a belief potential computation. This technique is
useful for calculating arbitrary belief, plausibility, and com-
monality potentials from a minimum number of operations.
Implementation of the relevant belief computation algorithms
based on the proposed framework is discussed and compared
with alternative approaches.

This paper is organized as follows: Section II provides a
review of essential DST notions. Section III introduces our
generalized computational framework. Section IV contains ef-
ficient algorithms for belief potential computation of arbitrary
propositions. Section V contains comparisons and experimen-
tal results. Section VI provides the concluding remarks.

II. BASIC NOTIONS OF DS BELIEF THEORY

In DS theory, the frame of discernment (FoD) refers to
the set of all possible mutually exclusive and exhaustive
propositions [3]. We consider the case where the FoD is
finite and we denote it as Θ = {θ0, θ1, . . . , θn−1}. Note that,
for computational ease, we use the indices 0 and n − 1 for
the first and the last elements, respectively. Proposition θi,
which is referred to as a singleton, represents the lowest level
of discernible information. The power set of Θ, denotes by
2Θ, form all the propositions of interest in DS theory. A
proposition that is not a singleton is referred to as a composite.
The cardinality of Θ is denoted by |Θ|. The set A\B denotes
all singletons in A ⊆ Θ that are not included in B ⊆ Θ, i.e.,
A\B = {θi ∈ Θ | θi ∈ A, θi /∈ B}. We use A to denote
Θ\A.

The most important representations used in DST representa-
tions and computations are the basic belief assignment (BBA)
or mass assignment denoted by m(·), belief denoted by Bl,
plausibility denoted by Pl, and commonality denoted by Q.

A. Basic Belief Assignment (BBA) or Mass Assignment
The mass represents the ‘support’ that is strictly allocated

to a given proposition.

Definition 1 (Basic Belief Assignment (BBA)). The mapping
m : 2Θ 7→ [0, 1] is said to be a basic belief assignment if

m(∅) = 0 and
∑
A⊆Θ

m(A) = 1.

The masses in composite propositions are free to move into
its individual singletons, which allows one to model the notion
of ignorance. Complete ignorance can be modeled via the vac-
uous BBA: m(A) = 1Θ ≡ 1 for A = Θ, and 0 for A ⊂ Θ.
Propositions that possess nonzero mass are referred to as focal
elements; the set of all focal elements in a FoD is referred to
as its core F, i.e., F = {A ⊆ Θ | m(A) > 0}. Note that |F|
is the number of focal elements. E = {Θ,F,m(·)} is referred
to as the body of evidence (BoE).

B. Belief
The belief assigned to a proposition takes into account the

support for all of its subsets.

Definition 2 (Belief). Given a BoE E = {Θ,F,m(·)}, the
belief assigned to A ⊆ Θ is Bl : 2Θ 7→ [0, 1] where

Bl(A) =
∑
B⊆A

m(B).

Propositions that posses nonzero belief are denoted by F̂,
i.e., F̂ = {A ⊆ Θ | Bl(A) > 0}.

C. Plausibility
The plausibility measures the extent to which a proposition

is plausible, i.e., the amount of belief not strictly supporting
the complement of the proposition.

Definition 3 (Plausibility). Given a BoE E = {Θ,F,m(·)},
the plausibility assigned to A ⊆ Θ is Pl : 2Θ 7→ [0, 1] where

Pl(A) = 1−Bl(A).

It is easy to see that

Pl(A) =
∑
B⊆Θ

B∩A6=∅

m(B). (1)

Moreover, Pl(A) ≥ Bl(A), ∀A ⊆ Θ. The uncertainty Un(A)
associated with the proposition A ⊆ Θ is taken as the interval
Un(A) = [Bl(A), P l(A)].

D. Commonality
The commonality quantifies the support for those proposi-

tions that imply a given proposition.

Definition 4 (Commonality). Given a BoE E = {Θ,F,m(·)},
the commonality function of A ⊆ Θ is Q : 2Θ 7→ [0, 1] where

Q(A) =
∑

A⊆B⊆Θ

m(B).

III. A GENERAL COMPUTATIONAL FRAMEWORK

Henceforth, for convenience, we will use the notation N to
denote 2n, where n = |Θ|. Note that, N = 2n is the maximum
number of focal elements that a BoE could possess. Actually,
the maximum number of focal elements is N − 1, but this
difference is immaterial especially when working with a large
FoD. Also we will refer to the subsets of A and A itself as
subset propositions of A and use the notation M to denote
2m, where m = |A|.

Fig. 1. REGAP: REcursive Generation of and Access to Propositions.

A lookup table named power is used to enhance the com-
putational efficiency. It contains 2 to the power of singleton
indexes in increasing order and was implemented using a
dynamic array that replaces run-time computation of power
values with a simpler array indexing operation. Power[i] is
referred to as 2 to the power of i, which is the i’th entry in
the power table.

Computational complexity of DST computations directly
depends on the access speed of focal elements and corre-
sponding belief values. In recent literature, the commonly
used approach for such computations is the utilization of list
structures for both focal elements and respective belief values,
or hard coding relevant values [9], [13], [14]. Representation
as a list or a set of pairs of focal elements and relevant
belief values are also used. Accessing a focal element in
list implementation requires cycling through the lists, and
complexity of this operation isO(|F|). In the novel generalized
computational framework that is being proposed in this paper,
propositions are identified via an implicit index. Therefore,
there is no overhead on storing focal elements as a bit-
string, an integer, or any other method; only belief potentials
require to be stored. Due to the efficient access operations,
the proposed method can be utilized to gain a significant
advantage on computational efficiency when dealing with large
BoEs. List structures become attractive when considering the
memory usage aspect of static BoEs, with a fewer number of
focal elements.

The proposed belief computation strategy provides gener-
ated indices. Therefore, computational complexity of an ele-
ment access isO(1) (i.e., constant) during belief computations.
In the provided general access algorithms which include index
generation, the computational complexity is O(m).

A. REGAP: REcursive Generation of and Access to
Propositions

Consider the FoD Θ = {θ0, θ1, . . . , θn−1}. Suppose we
desire to determine the belief potential associated with A =
(θk1 , θk2 , . . . , θk`

} ⊆ Θ. The REGAP property allows us to
recursively generate the propositions that are relevant for this
computation: Start with ∅. First insert the singleton θk1

∈ A.
Only one proposition is associated with this singleton, viz.,
∅ ∪ θk1

= θk1
itself. Next insert another singleton θk2

∈ A.
The new propositions that are associated with this singleton

are ∅ ∪ θk2
= θk2

and θk1
∪ θk2

= (θk1
, θk2

). Inserting
another singleton θk3 ∈ A brings the new propositions
∅ ∪ θk3 = θk3 , θk1 ∪ θk3 = (θk1 , θk3), θk2 ∪ θk3 = (θk2 , θk3),
and (θk1

, θk2
)∪ θk3

= (θk1
, θk2

, θk3
). In essence, when a new

singleton is added, new propositions associated with it can
be recursively generated by adding the new singleton to each
existing proposition. Of course, all propositions of interest
within the FoD Θ can be generated when A = Θ.

We refer to this recursive scheme as REGAP, which stands
for REcursive Generation of and Access to Propositions. It is
illustrated in Fig. 1. These recursively generated propositions
can be formulated as a vector, a matrix or a tree, and utilized
to represent a dynamic BoE.

1) DS-Vector: Vector Representation of a Dynamic BoE:
All propositions generated via REGAP can be represented
using a dynamic vector, which we refer to as a DS-Vector. This
is illustrated in Fig. 2. It can also be used as a visualization
tool of a dynamic BoE.

From a computational point of view, a DS-Vector can be
viewed as a dynamic array data structure [26]. Propositions
are represented by implicit contiguous indexes, which are
considered as implicit bit-strings or decimal integers. So, no
memory allocation is needed to store a proposition. Memory
allocation is needed only to store the required belief potentials
(or, more generally, mass, belief, plausibility, or commonality
potentials).

Algorithm 1 provides an implementation to access a belief
potential in O(m) complexity. When the proposition index is
available, this becomes a constant time (i.e., O(1)) operation.

Algorithm 1 Access a belief potential in a DS-Vector
1: procedure ACCESSPOTENTIAL(Singletons A)
2: index← 0
3: for each θi in A do
4: index← index+ power[i]
5: end for
6: Return potential[index]
7: end procedure

The salient steps in the algorithm are as follows:
Line #1: The required proposition can be passed as a bit-

string or an integer. If so, this segment has to be replaced

Fig. 2. DS-Vector: Vector representation of a dynamic BoE.

by a single input parameter (a bit-string or an integer). In this
algorithm, the input parameter is represented in a more general
way and passed as A, which includes all the constituent
singleton propositions of the proposition of interest A.

Lines #3-5: Implicit index of the proposition is calculated
by adding 2 to the power of indexes (power[i]) relevant to all
the singleton propositions in A.

Line #6: Propositions are represented by implicit indexes
and belief potentials are stored in the contiguous memory
segments of the DS-Vector. Thus, potential[index] retrieves
the respective belief potential.

2) DS-Matrix: Matrix Representation of a Dynamic BoE:
All propositions generated via REGAP can also be represented
using a dynamic matrix as illustrated in Fig. 3. We refer to
this as a DS-Matrix.

From a computational point of view, the DS-Matrix can
be implemented using a dynamic array of dynamic arrays
[26]. Propositions are represented by two implicit contiguous
indexes (i and j), which are considered as two implicit bit-
strings or two decimal integers.

Algorithm 2 provides an implementation to access a belief
potential in O(m) complexity.

Algorithm 2 Access a belief potential in a DS-Matrix
1: procedure ACCESSPOTENTIAL(EvenSingletons Ae, Odd-

Singletons Ao)
2: row ← 0
3: col← 0
4: for each θi in Ao do
5: row = row + power[i]
6: end for
7: for each θi in Ae do
8: col = col + power[i]
9: end for

10: Return potential[row][col]
11: end procedure

The main steps in the algorithm are as follows:
Line #1: Input parameters are passed as Ae and Ao; Ae

includes even numbered singletons and Ao includes odd
singletons of the proposition of interest A (A = Ae ∪Ao).

Lines #4-6: Row index is computed by adding 2 to the
power of existing odd singleton indexes (power[i]) in Ao.

Lines #7-9: Column index is calculated from the addition
of 2 to the power of even singleton indexes (power[i]) in Ae.

Line #10: Belief potentials can be accessed by implicit row
index and implicit column index; potential[row][col] retrieves
the respective belief potential.

3) DS-Tree: Perfectly Balanced Binary Tree Representation
of a Dynamic BoE: Another way to represent all propositions
generated via REGAP is a perfectly balanced binary tree [26]
as illustrated in Fig. 4. We refer to this as a DS-Tree. When a
new singleton is added, the singleton proposition itself stays
as the root. Previous propositions stay on the left sub-tree.
The new propositions relevant to the incoming singleton are
generated by applying REGAP. Those elements stay on the
right sub-tree.

Propositions are represented by relative positions according
to the illustration provided in Fig. 4. So focal elements can be
interpreted as implicit bit-strings or decimal integers. Thus,
no memory allocation is needed to store propositions. Only
respective belief potentials are contained in the nodes.

Representation of propositions follow the perfectly bal-
anced binary search tree properties [27]. Therefore, it can be
implemented using a dynamic array and follows DS-Vector
properties. When the DS-Tree complies with classical binary
tree implementations, Algorithm 3 provides access to a belief
potential in O(log(N)) (or O(n)).

A belief potential of a proposition can be accessed by
traversing through the implicit indexes of the binary tree. The
important steps in the algorithm are as follows:

Line #1: Input parameters are the FoD Θ, constituent
singleton propositions of the proposition of interest A, and
the DS-Tree T .

Lines #5-7: Index of the proposition is computed by adding
2 to the power of singleton indexes (power[i]) in A.

Line #8: The binary tree is traversed down, starting from the
root node, until the condition index mod power[level] > 0 is
satisfied.

Lines #10-11: Left sub-tree is traversed if the index is less
than the current implicit index.

Lines #12-18: Right sub-tree is traversed if the index is
greater than the current implicit index.

Line #21: Required node relevant to the proposition is
obtained at end of the traversal. So node.potential gives the
relevant belief potential.

Fig. 3. DS-Matrix: Matrix representation of a dynamic BoE.

Fig. 4. DS-Tree: Perfectly balanced binary tree representation of a dynamic BoE.

IV. EFFICIENT ALGORITHMS FOR ARBITRARY BELIEF
COMPUTATIONS

Fast Möbius transform was developed towards addressing
the high computational complexity of belief potential calcula-
tions [10], [11], [25]. However, it is inadequate to make ar-
bitrary belief function computations feasible, especially when
working with large FoDs [7]. Employing REGAP, we propose
a new approach to identify propositions relevant to a given
belief computation. This technique can be used to calculate
arbitrary belief, plausibility, and commonality function values
from a minimum number of operations.

A. Belief Calculation
List structure implementation is the commonly utilized

approach to store mass potentials [9], [12]–[14]. Belief calcu-
lation requires cycling through the list structure to recognize
whether each focal element should be included in the com-
putation. Thus, computational complexity of this operation is
O(|F|).

The REGAP strategy offers an alternative to generate the
required propositions relevant to the computation of Bl(A),
where A ⊆ Θ. In this method, belief computation is performed
by accessing only the subset propositions. The maximum
number of subset propositions that one would have to access
is about M = 2m, where m = |A|.

Algorithm 3 Access a belief potential in a DS-Tree
1: procedure ACCESSPOTENTIAL(FoD Θ, Singletons A,

DS-Tree T)
2: index← 0
3: level← |Θ| − 1
4: node← T.root
5: for each θi in A do
6: index← index+ power[i]
7: end for
8: temp← index
9: while temp mod power[level] > 0 do

10: if temp/power[level] = 0 then
11: node← node.left
12: else if temp/power[level] = 1 then
13: temp← temp− power[level]
14: if temp = 0 then
15: break the loop
16: end if
17: node← node.right
18: end if
19: level← level − 1
20: end while
21: Return node.potential
22: end procedure

1) DS-Vector: Algorithm 4 provides an implementation to
compute a belief potential in O(M) (or O(2m)) complexity.

Algorithm 4 Computing Belief in a DS-Vector
1: procedure COMPUTEBELIEF(Singletons A, Normalize
Nlz)

2: belief ← 0
3: count← 0
4: for each θi in A do
5: index[count]← power[i]
6: temp← count
7: count← count+ 1
8: for j ← 0, temp− 1 do
9: index[count]← index[j] + power[i]

10: count← count+ 1
11: end for
12: end for
13: for i← 0, power[|A|]− 2 do
14: belief ← belief + potential[index[i]]
15: end for
16: Return belief/Nlz
17: end procedure

The main steps in the algorithm are as follows:
Line #1: Input parameters are A and normalizing constant

Nlz. Normalizing constant is the summation of all the mass
potential values. mass potential are stored in raw values to
improve the performance.

Lines #4-12: Subset propositions of A are generated by
applying REGAP.

Lines #13-15: Belief is the summation of the potentials of
relevant generated implicit indexes. Computational complexity
of an iteration is O(1) (access operation).

Line #16: Normalized belief potential is the output param-
eter of the procedure.

2) DS-Matrix: Algorithm 5 can be used to compute a belief
potential in O(M) (or O(2m)) complexity.

Algorithm 5 Computing Belief in a DS-Matrix
1: procedure COMPUTEBELIEF(SingletonCoordinates AP ,

Normalize Nlz)
2: belief ← 0
3: count← 0
4: for each pair p in AP do
5: index[count].row ← p.row
6: index[count].col← p.col
7: temp← count
8: count← count+ 1
9: for j ← 0, temp− 1 do

10: index[count].row ← index[j].row + p.row
11: index[count].col← index[j].col + p.col
12: count← count+ 1
13: end for
14: end for
15: for i← 0, power[|AP |]− 2 do
16: belief ← belief
17: +potential[index[i].row][index[i].col]
18: end for
19: Return belief/Nlz
20: end procedure

The salient steps in the algorithm are as follows:
Line #1: Input parameters are AP and normalizing constant

Nlz. AP contains row and column coordinate pairs of all the
singleton propositions of the proposition of interest A.

Lines #4-14: Subset propositions of A are obtained by
applying REGAP.

Lines #15-18: Belief is the summation of the potentials
relevant to the generated implicit index pairs. Computational
complexity of an iteration is O(1) (access operation).

Line #19: Procedure returns the normalized belief potential.
3) DS-Tree: Algorithm 6 can be used to compute a belief

potential in O(M log(N)) (or O(2mn)) complexity when the
DS-Tree is implemented using node structures. Dynamic array
implementation of the DS-Tree complies with algorithm 4 and
the belief computation complexity is O(M) (or O(2m)).

The salient steps in the algorithm are as follows:
Line #1: Input parameters are the proposition of interest A,

DSTree T , and normalizing constant Nlz.
Lines #4-12: Subset propositions of A obtained by applying

REGAP.
Lines #13-30: Belief is the summation of the potentials of

generated implicit indexes. Computational complexity of a tree
traversal iteration is O(log(N)) (or O(n)) and follows the
Algorithm 3.

Algorithm 6 Computing Belief in a DS-Tree
1: procedure COMPUTEBELIEF(Singletons A, DSTree T ,

Normalize Nlz)
2: belief ← 0
3: count← 0
4: for each θi in A do
5: index[count]← power[i]
6: temp← count
7: count← count+ 1
8: for j ← 0, temp− 1 do
9: index[count]← index[j] + power[i]

10: count← count+ 1
11: end for
12: end for
13: for i← 0, power[|A|]− 2 do
14: level← |Θ| − 1
15: leaf ← T.root
16: index← index[i]
17: while index mod power[level] > 0 do
18: if index/power[level] = 0 then
19: leaf ← leaf.left
20: else if index/power[level] = 1 then
21: index← index− power[level]
22: if index = 0 then
23: break the loop
24: end if
25: leaf ← leaf.right
26: end if
27: level← level − 1
28: end while
29: belief ← belief + leaf.mass
30: end for
31: Return belief/Nlz
32: end procedure

Line #31: Normalized belief potential is the output param-
eter of the procedure.

B. Plausibility and Commonality Calculation
Plausibility Pl(A) can be computed by observing that

Pl(A) = 1 − Bl(A) and applying a belief computation
algorithm to A. Propositions relevant to commonality Q(A)
calculation can be generated by applying REGAP to A and
adding proposition A to all the generated propositions. In this
way, computations can also be performed with minor modifi-
cations to Algorithms 4, 5, and 6. Computational complexity
remains the same as for belief computation algorithms.

V. EXPERIMENTS

We have developed a novel belief computation library
[28] using the C++ programming language. This includes
the implementation of data structures and algorithms for a
generalized computational framework, in particular, the three
representations DS-Vector, DS-Matrix, and DS-Tree, for rep-
resenting DST models and carrying out DST operations. All

experiments were simulated on a Macintosh desktop computer
(iMac) running Mac OS X 10.11.3, with 2.9GHz Intel Core
i5 processor and 8GB of 1600MHz DDR3 RAM.

Average computational times for accessing arbitrary propo-
sitions are listed in Table I for different implementations:
DS-Vector in algorithm 1, DS-Matrix in algorithm 2, and
common list structure implementation. Results were obtained
by executing the algorithms for 100000 randomly chosen
propositions from the FoD and noting the average CPU time.
A random set of focal elements were generated in the core for
each FoD size.

FoD Size Max. |F| DS-Vector DS-Matrix List Struct.
2 3 0.379 0.393 0.465
4 15 0.400 0.412 0.510
6 63 0.410 0.454 0.739
8 255 0.443 0.449 1.541

10 1023 0.433 0.496 4.632
12 4095 0.465 0.493 16.906
14 16383 0.465 0.527 67.242
16 65535 0.495 0.517 268.443
18 262143 0.529 0.560 1124.060
20 1048575 0.575 0.629 4609.370

TABLE I
CPU TIME OF ACCESSING A PROPOSITION (µS)

From Table I, the speed advantage of the three proposed
implementations over the commonly used list structure imple-
mentation is quite clear. With increasing FoD size, the access
times for DS-Vector and DS-Matrix almost remain the same
when compared to the rapid growth of the computational times
in list structure implementation.

Average computational times of a randomly chosen belief
computation using the algorithm 4, algorithm 5, and list struc-
tures are given in Table II. Results were obtained by executing
the algorithms for 100000 randomly chosen propositions and
noting the average CPU time. A random set of focal elements
were generated in the core for each FoD size.

FoD Size Max. |F| DS-Vector DS-Matrix List Struct.
2 3 0.373 0.362 0.450
4 15 0.378 0.376 0.531
6 63 0.415 0.450 0.833
8 255 0.453 0.508 1.779

10 1023 0.525 0.663 5.529
12 4095 0.655 0.923 20.757
14 16383 0.884 1.314 81.196
16 65535 1.340 2.159 325.930
18 262143 2.107 3.510 1373.110
20 1048575 3.963 6.210 5448.170

TABLE II
CPU TIME OF A BELIEF COMPUTATION (µS)

The proposed implementations offer better results when
compared with the commonly used list structure implemen-
tation. With increasing FoD size, the average computational
time of a randomly chosen belief function increases very
slowly with DS-Vector and DS-Matrix in comparison to the
list structure implementation. The DS-Tree provides the same
experimental results as DS-Vector.

VI. CONCLUDING REMARKS

.
This paper provides a general framework along with data

structures and efficient algorithms for DST computations. The
data structures presented can also serve as tools for BoE
visualization. We believe that the proposed implementations
constitute a significant step forward in harnessing the strengths
of DS theory in practical application scenarios.

The implicit index calculation mechanism that we introduce
for the purpose of representing a proposition serves to reduce
the memory usage and to significantly improve computational
efficiency. All the indexes are calculated according to relative
positions in the data structures. Only belief potentials need to
be stored. Memory usage efficiency is greatly improved since
representing the proposition as a bit-string or an integer is
unnecessary.

When the index of the proposition is available, the proposed
algorithms for accessing a proposition take a constant time
irrespective of the FoD’s size. Therefore updating a belief
potential (or a mass potential) in a BoE can be executed
in significantly less time. The proposed REGAP strategy is
invaluable in that it allows one to identify the exact subsets
relevant to a given belief computation. Efficient algorithms for
belief calculation of arbitrary propositions are also developed
by ensuring that only a minimum possible number of opera-
tions are executed.

Representation of DS-Tree propositions follow the perfectly
balanced binary search tree properties. Therefore, it can be
implemented using a dynamic array and can gain the per-
formance relevant to a DS-Vector. As an outcome of this
research work, a belief computation library in C++ which
includes all the important operations to work with belief
computations is made available [28]. This may be useful for
a significant performance improvement for applications based
on DST methods.

Our current research explores at how to incorporate the
ability to add and remove singletons from the FoD, i.e., how
to handle dynamic FoDs. Removing one singleton from a
FoD removes half the propositions that need to be considered.
Thus, from a computational perspective, the ability to add,
remove, and change the FoD is highly important. Based on
the proposed computational framework, it is also possible to
develop efficient algorithms for Demspter’s combination rule,
DST conditional [29], the conditional update equation [30],
and other operations associated with DST algorithms.

ACKNOWLEDGMENT

This work is based on research supported by the U.S.
Office of Naval Research (ONR) via grant #N00014-10-1-
0140, and the U.S. National Science Foundation (NSF) via
grant #1343430.

REFERENCES

[1] A. P. Dempster, “Upper and lower probabilities induced by a multivalued
mapping,” Ann. Math. Stat., vol. 38, no. 2, pp. 325–339, 1967.

[2] ——, “A generalization of bayesian inference,” J. Roy. Statistical Soc.,
vol. 30, no. 2, pp. 205–247, 1968.

[3] G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ:
Princeton Univ. Press, 1976.

[4] R. R. Yager, J. Kacprzyk, and M. Fedrizzi, Eds., Advances in the
Dempster-Shafer Theory of Evidence. New York: Wiley, 1994.

[5] P. Smets, “Practical uses of belief functions,” in Proc. Conf. 15th
Uncertainty in Artificial Intelligence (UAI), K. B. Laskey and H. Prade,
Eds. San Francisco, CA: Morgan Kaufmann, 1999, pp. 612–621.

[6] R. R. Yager and L. Liu, Eds., Classic Works of the Dempster-Shafer
Theory of Belief Functions. Heidelberg, Germany: Springer-Verlag,
2008.

[7] G. Shafer, “Perspectives on the theory and practice of belief functions,”
Int. J. Approx. Reasoning, vol. 4, no. 5-6, pp. 323–362, Oct. 1990.

[8] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Francisco, CA: Morgan Kaufmann, 1988.

[9] SIPTA. (2016) Software tools for imprecise probabilities. [Online].
Available: http://www.sipta.org/index.php?id=sfw

[10] H. M. Thoma, “Factorization of belief functions,” Ph.D. dissertation,
Harvard University, Cambridge, MA, 1989.

[11] ——, “Belief function computations,” in Conditional Logic in Expert
Systems, I. R. Goodman, M. M. Gupta, H. T. Nguyen, and G. S. Rogers,
Eds. Amsterdam: North-Holland, 1991, pp. 269–308.

[12] H. Xu and R. Kennes, “Steps toward efficient implementation on
dempster-shafer theory,” in Advances in the Dempster-Shafer Theory
of Evidence, R. R. Yager, J. Kacprzyk, and M. Fedrizzi, Eds. New
York: Wiley, 1994, pp. 153–174.

[13] L. Liu, “A relational representation of belief functions,” in Belief
Functions: Theory and Applications, F. Cuzzolin, Ed. Switzerland:
Springer, 2014, pp. 161–170.

[14] R. Haenni and N. Lehmann, “Implementing belief function computa-
tions,” Int. J. Intelligent Syst., vol. 18, no. 1, pp. 31–49, 2003.

[15] N. Lehmann, “Fast projection of focal sets,” in Proc. 3rd Int. Conf. Intel-
ligent Sensors, Sensor Networks and Information, Melbourne, Australia,
Dec 2007, pp. 191–196.

[16] P. Smets, “The application of the matrix calculus to belief functions,”
Int. J. Approx. Reasoning, vol. 31, no. 1, pp. 1–30, 2002.

[17] H. Wu, “Sensor data fusion for context-aware computing using
dempster-shafer theory,” Ph.D. dissertation, Robotics Inst., Carnegie
Mellon Univ., Pittsburgh, PA, 2003.

[18] F. Voorbraak, “A computationally efficient approximation of dempster-
shafer theory,” Int. J. Man-Machine Stud., vol. 30, no. 5, pp. 525–536,
1989.

[19] D. Dubois and H. Prade, “Consonant approximations of belief func-
tions,” Int. J. Approx. Reasoning, vol. 4, no. 5, pp. 419–449, 1990.

[20] B. Tessem, “Approximations for efficient computation in the theory of
evidence,” Artificial Intell., vol. 61, no. 2, pp. 315–329, 1993.

[21] M. Bauer, “Approximation algorithms and decision making in the
dempster-shafer theory of evidencean empirical study,” Int. J. Approx.
Reasoning, vol. 17, no. 2, pp. 217–237, 1997.

[22] D. Harmanec, “Faithful approximations of belief functions,” in Proc.
Conf. 15th Uncertainty in Artificial Intelligence (UAI). San Francisco,
CA: Morgan Kaufmann, 1999, pp. 271–278.

[23] T. Denœux, “Inner and outer approximation of belief structures us-
ing a hierarchical clustering approach,” Int. J. Uncertainty, Fuzziness
Knowledge-Based Syst., vol. 9, no. 4, pp. 437–460, 2001.

[24] R. Haenni and N. Lehmann, “Resource bounded and anytime approxima-
tion of belief function computations,” Int. J. Approx. Reasoning, vol. 31,
no. 1, pp. 103–154, 2002.

[25] R. Kennes and P. Smets, “Fast algorithms for dempster-shafer theory,”
in Uncertainty in Knowledge Bases, B. Bouchon-Meunier, R. R. Yager,
and L. A. Zadeh, Eds. Berlin: Springer-Verlag, 1990, pp. 14–23.

[26] R. Sedgewick, Algorithms in C++, 3rd ed. Boston, MA: Addison-
Wesley, 2002.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. Cambridge, MA: The MIT Press, 2009.

[28] ProFuSELab. (2016) Belief computation library. [Online]. Available:
https://github.com/ProFuSELab/Belief-Computation-Library

[29] R. Fagin and J. Y. Halpern, “A new approach to updating beliefs,”
in Proc. Conf. 6th Uncertainty in Artificial Intelligence (UAI), P. P.
Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer, Eds. New
York: Elsevier Science, 1991, pp. 347–374.

[30] T. L. Wickramarathne, K. Premaratne, M. N. Murthi, M. Scheutz,
S. Kuebler, and M. Pravia, “Belief theoretic methods for soft and hard
data fusion,” in Proc. Int. Conf. Acoustics, Speech, and Signal Processing
(ICASSP), Prague, Czech Republic, May 2011, pp. 2388–2391.

