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Abstract—The Dempster–Shafer (DS) belief theory constitutes
a powerful framework for modeling and reasoning with a wide
variety of uncertainties due to its greater expressiveness and
flexibility. As in the Bayesian probability theory, the DS theo-
retic (DST) conditional plays a pivotal role in DST strategies for
evidence updating and fusion. However, a major limitation in
employing the DST framework in practical implementations is
the absence of an efficient and feasible computational framework
to overcome the prohibitive computational burden DST opera-
tions entail. The work in this article addresses the pressing need
for efficient DST conditional computation via the novel computa-
tional model DS-Conditional-All. It requires significantly less time
and space complexity for computing the Dempster’s conditional
and the Fagin–Halpern conditional, the two most widely utilized
DST conditional strategies. It also provides deeper insight into the
DST conditional itself, and thus acts as a valuable tool for visu-
alizing and analyzing the conditional computation. We provide
a thorough analysis and experimental validation of the utility,
efficiency, and implementation of the proposed data structure
and algorithms. A new computational library, which we refer
to as DS-Conditional-One and DS-Conditional-All (DS-COCA), is
developed and harnessed in the simulations.

Index Terms—Algorithms, computational complexity, data
structures, Dempster’s conditional, Dempster–Shafer (DS) belief
theory, evidential reasoning, Fagin–Halpern conditional.

I. INTRODUCTION

THE DEMPSTER–SHAFER (DS) belief theory [1]–[3],
also referred to as evidence theory, is a powerful

and convenient framework that offers greater expressive-
ness and flexibility for handling a wider variety of data
imperfections [4]–[6]. With the realization of the vital role
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that human-generated “soft” data play in decision-making
systems [7]–[9] and the importance of soft data as a
complementary source of information to fuse with sensor-
generated “hard” data [10]–[14], the DS-theoretic (DST)
framework has become an important tool for handling
uncertainty [15]–[19].

Motivation: As in the Bayesian methods [20], the condi-
tional operation plays a fundamental role in DST strategies
for evidence updating and fusion and, in general, in reasoning
under uncertainty. While numerous strategies of DST con-
ditioning have appeared in [3] and [21]–[26], perhaps the
most extensively utilized DST conditional notions are the
Dempster’s conditional [3], [27]–[30] and the Fagin–Halpern
(FH) conditional [23]. The FH conditional is closely related
to the inner and outer conditional probability measures and,
as suggested in recent works [12], [31], it can arguably be
considered the most natural generalization of the probabilistic
conditional notion.

A major criticism directed toward DST implementations is
their high computational burden. Computing the DST condi-
tionals, and even the computation of DST belief functions,
are nondeterministic polynomial-time hard (NP-hard) prob-
lems [32], [33]. The development of an efficient computational
framework for DST computations is of critical importance if
we are to harness the strengths of the DS theory and make
it more widely applicable in practice and in real-world real-
time scenarios. This has indeed been identified as an issue that
requires increased attention [34].

Challenges: Despite the tremendous advantages DST mod-
els offer in terms of their ability to represent a wide variety
of data uncertainties, and reason and infer in their presence,
DST implementations in current use are restricted to smaller
frames of discernments (FoDs). While several approximation
techniques to overcome the difficulty associated with com-
puting DST quantities have been proposed [35]–[41], many
of these approaches can dramatically affect the quality of
approximation, and some lack the ability to be extended for
computing DST conditionals. The quality of evidence updat-
ing/fusion strategies directly depends on the precision of the
underlying computations. Thus, making exact (or precise)
conditional computations feasible is of utmost importance
for reasoning and inference under uncertainty. A review of
existing studies on precise DST computations and their appli-
cations [27], [30], [42]–[55] reveals that more work is needed
to overcome these limitations associated with DST conditional
computation.
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Previous Work: While the recent work in [52] proffers
several DST data structures for highly efficient exact computa-
tions of the DST measures, it does not address the computation
of DST conditionals. Perhaps the most thorough discussions
regarding precise computation of the Dempster’s conditional
appear in [27] and [30], where a matrix calculus-based algo-
rithm to compute Dempster’s conditional masses is proposed.
However, this approach, which employs a certain special-
ization matrix, is feasible only for smaller FoDs because it
involves a 2|!| × 2|!| stochastic matrix (|!| refers to the
cardinality of the FoD !). Indeed, the time and space com-
plexity of this approach are O(2|!| × 2|!|). So, for example,
assuming 10 million computational iterations per second, it
can take over 1800 CPU years for an FoD size of 30 and
more than 15 CPU hours for an FoD size of 20. Moreover,
this method is also not applicable for computing the FH
conditional.

Regarding the FH conditional, the conditional core theo-
rem (CCT) in [56] can be used to identify propositions that
retain nonzero support after FH conditioning. However, the
CCT offers no strategy to compute the corresponding condi-
tionals. In fact, the time complexity of the CCT can approach
O(2|!| × 2|!|), a prohibitive burden indeed for larger FoDs.

The DS-Conditional-One computational model in [53] can
be employed to compute the conditional belief of an arbitrary
proposition. But it does not address the computation of all
conditional beliefs (or masses).

Contributions: Our main contribution is a novel scalable,
generalized computational model, which we refer to as DS-
Conditional-All, which offers significantly greater flexibility
and computational capability for implementation of the DST
update/fusion strategies. Its advantages are as follows.

1) DS-Conditional-All model can be utilized for efficient
computation of all the (Dempster’s or FH) conditional
beliefs.

2) DS-Conditional-All is significantly superior to those
conditional computation schemes that are currently
available (including the use of the DS-Conditional-One
model to compute each conditioned proposition one
by one). By carefully reducing the number of oper-
ations being executed, the proposed approach takes
significantly less time and lower space complexity. For
example, as shown in Table I, our experimental results
demonstrate that the average computational time taken
to compute the Dempster’s or FH conditional beliefs of
all propositions by the DS-Conditional-All model is less
than 22 (µs) for an FoD of size 10 (∼1000 focal ele-
ments), 27 (ms) for an FoD of size 20 (∼1 million focal
elements), and less than 42.1 (s) for an FoD of size 30
(∼1 billion focal elements). In comparison, the direct
use of the DS-Conditional-One model [53] to compute
each conditioned proposition one by one requires more
than 303 (µs) for an FoD of size 10, 8.6 (s) for an FoD
of size 20, and the computation becomes prohibitive for
an FoD of size 30. The specialization matrix approach
[27], [30] requires more than 98.4 (ms) for an FoD of
size 10 and the computation becomes prohibitive for an
FoD of size 20 or more.

3) DS-Conditional-All can be utilized as a common plat-
form to carry out both FH and Dempster’s conditional
computations. This feature stands in stark contrast to
existing computational implementations that apply to the
computation of either the Dempster’s conditional or the
FH conditional.

4) An added advantage that DS-Conditional-All offers is
that it can also be used to compute Dempster’s condi-
tional masses of all propositions. As shown in Table I,
this method requires less than 14 (µs) for an FoD of size
10, less than 9.4 (ms) for an FoD of size 20, and less than
25.4 (s) for an FoD of size 30. In comparison, the use
of the DS-Conditional-One model [53] requires more
than 320 (µs) for an FoD of size 10, more than 8.6 (s)
for an FoD of size 20, and the computation becomes
prohibitive for an FoD of size 30 or more. The special-
ization matrix approach [27], [30] requires more than
98.4 (ms) for an FoD of size 10 and the computation
becomes prohibitive for an FoD of size 20 or more.

A complete conditional computation library in C++ (DS-
COCA) that includes all relevant software routines are avail-
able to the interested reader [57]. We believe that this
computational framework and the associated implementations
constitute a significant step toward closing the gap between
the promise of DST methods for reasoning under uncer-
tainty and its practical implementation. This computational
framework can also serve as a tool for visualizing how condi-
tional computations progress within conditioning and updating
operations.

The remainder of this article is organized as follows.
Section II provides a review of essential DST notions.
Section III introduces the DS-Conditional-All computational
model. Section IV contains algorithms for the efficient com-
putation of DST conditionals. Section V contains comparisons
and experimental results. Section VI provides the concluding
remarks.

II. PRELIMINARIES: DS BELIEF THEORY

A. Basic Notions

In the work to follow, we only consider the case where
the FoD !, which refers to the set of all possible mutu-
ally exclusive and exhaustive propositions [3], is finite. Thus,
let ! = {θ0, θ1, . . . , θn−1}. The proposition {θi}, referred
to as a singleton, represents the lowest level of discernible
information. In the DS theory, the power set 2! of ! repre-
sents all propositions of interest. A proposition that is not a
singleton is referred to as a composite. The set A\B denotes
all singletons in A ⊆ ! that are not included in B ⊆ !, that
is, A\B = {θi ∈ ! | θi ∈ A, θi /∈ B}, A denotes !\A, and |A|
denotes the cardinality of A.

In the DS theory, the basic belief assignment (BBA) or mass
represents the “support” strictly allocated to a proposition.

Definition 1 (BBA or Mass Assignment): The mapping
m : 2! '→ [0, 1] is said to be a BBA or a mass assignment if

∑

A⊆!

m(A) = 1, with m(∅) = 0.
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The mass of a composite proposition is free to move into its
subsets (including individual singletons), which allows one to
model the notion of ignorance. For example, complete igno-
rance can be modeled via the vacuous BBA, where m(A) = 1
for A = ! and m(A) = 0 for A *= !. Propositions that possess
nonzero mass are referred to as focal elements; the set of all
focal elements in an FoD is referred to as its core F, that is,
F = {A ⊆ ! | m(A) > 0}. Note that |F| is the number of
focal elements. The triple E = {!,F, m(·)} is referred to as
the body of evidence (BoE).

The belief assigned to a proposition takes into account the
support for all of its subsets. On the other hand, the plausibility
measures the extent to which a proposition is plausible, that
is, the amount of belief not strictly supporting the complement
of the proposition.

Definition 2 (Belief and Plausibility): Given a BoE E =
{!,F, m(·)}, the belief and plausibility assigned to A ⊆ !

are, respectively, Bl : 2! '→ [0, 1] and Pl : 2! '→ [0, 1],
where

Bl(A) =
∑

B⊆A

m(B); Pl(A) =
∑

B∩A*=∅
m(B).

Note that 0 ≤ Bl(A) ≤ Pl(A) = 1 − Bl(A) ≤ 1 ∀A ⊆
!. Given a valid belief function Bl : 2! '→ [0, 1], one may
generate the corresponding BBA m : 2! '→ [0, 1] via the
Möbius transform [3]

m(A) =
∑

B⊆A

(−1)|A\B|Bl(B) ∀A ⊆ !. (1)

We will use F̂ to identify the set of propositions that pos-
sess nonzero belief, that is, F̂ = {A ⊆ ! | Bl(A) > 0}. For
convenience, we will also employ the following notation:

S(A; B) =
∑

∅*=C⊆A;
∅*=D⊆B

m(C ∪ D); T (A; B) =
∑

C⊆A

m(C ∪ B). (2)

Note that S(A; B) involves the masses of all those proposi-
tions that “straddle” both A ⊆ ! and B ⊆ !; it contains
neither m(A) nor m(B). On the other hand, T (A; B) involves
the masses of all those propositions that properly contain B
and “straddle” A ⊆ !; it contains m(B).

Our computational models for computing the DST condi-
tionals rely on several important results that we now state.

Proposition 1: Consider the BoE E = {!,F, m(·)} and
A ⊆ !. For B ⊆ !, consider the mappings #A : 2! '→ [0, 1]
and $A : 2! '→ [0, 1], where

#A(B) =
∑

∅*=X⊆A

m((A ∩ B) ∪ X); $A(B) =
∑

Y⊆(A∩B)

#A(Y).

Then, the following are true.
1) #A(A ∩ B) = #A(B) and $A(A ∩ B) = $A(B).
2) #A(∅) = $A(∅) = Bl(A).
3) #A(B) = T (A; A ∩ B)− m(A ∩ B).
4) $A(B) = $A(∅) + S(A; A ∩ B).
Proof: 1)–3) follow by direct substitution. To show 4), note

that

$A(B) =
∑

Y⊆(A∩B)

∅*=X⊆A

m((A ∩ Y) ∪ X).

When Y = ∅, the right-hand side yields #A(∅) = $A(∅) =
Bl(A); else, it yields S(A; A ∩ B). This establishes 4).

Note that in light of 1), w.l.o.g., we can assume that B ⊆ A
and write

#A(B) =
∑

∅*=X⊆A

m(B ∪ X); $A(B) =
∑

Y⊆B

#A(Y). (3)

Thus, #A(B) involves the masses of all those propositions that
“straddle” both A and precisely B. On the other hand, $A(B)

involves the masses of all those propositions that “straddle”
both A and B (including its subsets).

B. Fagin–Halpern Conditional

As mentioned earlier, the FH conditional [23] can arguably
be considered the most natural generalization of the proba-
bilistic conditional [12], [31].

Definition 3 (Fagin–Halpern (FH) Conditional [23]):
Consider BoE E = {!,F, m(·)} and A ∈ F̂. The conditional
belief Bl(B|A) : 2! '→ [0, 1] of B given the conditioning
proposition A is

Bl(B|A) = Bl(A ∩ B)

Bl(A ∩ B) + Pl
(
A ∩ B

) .

The conditional plausibility follows from Pl(B|A) = 1 −
Bl(B|A). Once the conditional beliefs of all the propositions
are computed, the corresponding conditional BBA m(·|A) can
be obtained via a Möbius transform of the type in (1).

Given the proposition A ∈ F̂, the propositions that retain a
nonzero mass after being conditioned by A are referred to as
the conditional focal elements; the set of all such conditional
focal elements is referred to as the conditional core FA, that
is, FA = {B ⊆ A ∈ F̂ | m(B|A) > 0}. In our work, we will
exploit several previous results related to the conditional core
[56], [58]. Of particular importance is the following result.

Lemma 1 [58]: Consider BoE E = {!,F, m(·)} and A ∈ F̂.
Then, the following are true.

1) m(B|A) = 0 whenever A ∩ B *= ∅.
2) Bl(B|A) can be expressed as

Bl(B|A) = Bl(A ∩ B)

Pl(A)− S
(
A; A ∩ B

) , B ⊆ A.

Note that 1) states that FH conditioning annuls those
propositions that have a nonempty intersection with the com-
plement of the conditioning proposition. So, w.l.o.g., for FH
conditioning, one may consider only those propositions B ⊆ A.

For our work, we will need the following alternate expres-
sion for the FH conditional.

Proposition 2: Consider the BoE E = {!,F, m(·)} and
A ∈ F̂. Then, we may express Bl(B|A) as

Bl(B|A) = Bl(A ∩ B)

1− Bl
(
A
)
− S

(
A; A ∩ B

) , B ⊆ !.

Proof: This follows directly from Lemma 1-2) by using the
fact that Bl(A) = 1− Pl(A).
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C. Dempster’s Conditional

Dempster’s conditional is perhaps the most widely
employed DST conditional notion [3].

Definition 4 (Dempster’s Conditional [3]): Consider BoE
E = {!,F, m(·)} and A ⊆ ! s.t. Bl(A) *= 1 or, equivalently,
Pl(A) *= 0. The conditional belief Bl(B‖A) : 2! '→ [0, 1] of
B given the conditioning proposition A is

Bl(B‖A) = Bl
(
A ∪ B

)
− Bl

(
A
)

1− Bl
(
A
) .

The conditional mass m(B‖A) : 2! '→ [0, 1] of B given the
conditioning proposition A is

m(B‖A) =






∑
C⊆A m(B ∪ C)

1− Bl
(
A
) , for ∅ *= B ⊆ A;

0, otherwise.

The conditional plausibility follows from Pl(B‖A) = 1 −
Bl(B‖A). Similar to FH conditioning, Dempster’s condition-
ing also annuls the masses of all those propositions that have
a nonempty intersection with the complement of the con-
ditioning. So w.l.o.g., one may again consider only those
propositions B ⊆ A.

For our work, we will need the following alternate expres-
sion for Dempster’s conditional.

Proposition 3: Consider BoE E = {!,F, m(·)} and
A ⊆ ! s.t. Bl(A) *= 1. Then, Bl(B‖A) can be expressed as

Bl(B‖A) = Bl(A ∩ B) + S
(
A; A ∩ B

)

1− Bl
(
A
) , B ⊆ !.

Proof: This follows directly from Definition 4 by using the
fact that Bl(A ∪ B) = Bl(A ∪ (A ∩ B)) = Bl(A) + Bl(A ∩ B) +
S(A; A ∩ B).

Propositions 2 and 3 highlight an important fact: the three
quantities Bl(A), Bl(A ∩ B), and S(A; A ∩ B) fully determine
both FH and Dempster’s conditionals Bl(B|A) and Bl(B‖A),
respectively. It is this observation that we exploit in our
computational model.

Direct substitution yields the following result.
Proposition 4: Consider BoE E = {!,F, m(·)} and A ⊆ !

s.t. Bl(A) *= 1. Then, m(B‖A) can be expressed as

m(B‖A) =






T
(
A; A ∩ B

)

1− Bl
(
A
) , for ∅ *= B ⊆ A;

0, otherwise.

D. REGAP Procedure

The work in [52] proposes new data structures—DS-Vector,
DS-Matrix, and DS-Tree—and computationally efficient algo-
rithms for computing the basic DST operations of belief
and plausibility. For this purpose, the authors utilize what is
referred to as the REGAP (recursive generation of and access
to propositions) procedure.

To explain, consider the FoD ! = {θ0, θ1, . . . , θn−1}.
Suppose we desire to determine the belief potential Bl(A) asso-
ciated with A = {θk0, θk1 , . . . , θk|A|−1} ⊆ !. Then, REGAP(A)

recursively generates all the 2|A|−1 propositions whose masses

are required to compute Bl(A), viz., all subsets of A (includ-
ing A itself). We will refer to the subsets of A and A itself
as subset propositions of A. REGAP(A) is implemented in the
following manner. Start with {∅}. First, insert the singleton
{θk0} ∈ A. Only one proposition is associated with this sin-
gleton, viz., {∅} ∪ {θk0} = {θk0} itself. Next, insert another
singleton {θk1} ∈ A. The new propositions that are associated
with this singleton are {∅} ∪ {θk1} = {θk1} and {θk0} ∪ {θk1} =
{θk0, θk1}. Inserting the next singleton {θk2} ∈ A brings the
new propositions {∅}∪ {θk2} = {θk2}, {θk0}∪ {θk2} = {θk0, θk2},
{θk1}∪ {θk2} = {θk1, θk2}, and {θk0 , θk1}∪ {θk2} = {θk0, θk1 , θk2}.
In essence, when a new singleton is added, new proposi-
tions associated with it can be recursively generated by adding
the new singleton to each existing proposition. Of course, all
propositions of interest within the FoD ! can be generated by
REGAP(!).

The propositions recursively generated via the REGAP pro-
cedure can be represented as a vector, DS-Vector, a matrix,
DS-Matrix, or a tree, DS-Tree, and utilized to capture a BoE.
We will utilize this REGAP procedure and the DS-Vector and
DS-Matrix structures in this work.

III. DS-CONDITIONAL-ALL COMPUTATIONAL MODEL

In this section, we develop our DS-Conditional-All com-
putational model. It is important to distinguish between the
DS-Conditional-One computational model in [53] and the DS-
Conditional-All model that is being developed below. The
DS-Conditional-One model can be used to compute the con-
ditional belief of a specific arbitrary proposition; on the other
hand, the DS-Conditional-All model can be used to compute
the FH and Dempster’s conditional beliefs of all propositions.
As it turns out, it can also be used to compute Dempster’s
conditional masses of all propositions. As we will presently
show, the DS-Conditional-All model incorporates strategies
that facilitates the representation, access, and efficient com-
putation of the quantities that are needed to compute these
conditionals (see Propositions 1–4).

Henceforth, we will denote the conditioning proposi-
tion A, its complement A, and the conditioned proposition
B as {a0, a1, . . . , a|A|−1}, {α0,α1, . . . ,α|A|−1}, and {b0, b1,

. . . , b|B|−1}, respectively. Here, ! = {θ0, θ1, . . . , θn−1}
denotes the FoD and ai,αj, bk ∈ !, that is, they are single-
tons. When dealing with FH and Dempster’s conditioning, it
is implicitly assumed that A ∈ F̂ and Bl(A) *= 1, respectively.

We will represent singletons of the conditioning propo-
sition A = {a0, a1, . . . , a|A|−1} as column singletons and
singletons of the complement of conditioning proposition
A = {α0,α1, . . . , α|A|−1} as row singletons in a DS-Matrix.
See segment 1© in Fig. 1. Note that this DS-Matrix is of size
(2|A| × 2|A|), meaning that it has 2|!| number of entries.

The proposed DS-Conditional-All computational model
allows direct identification of REGAP(A), REGAP(A),
(REGAP(A)×REGAP(A)), (REGAP(A)×B), #A(B) ∀B ⊆ A,
and $A(B) ∀B ⊆ A. Among these, the following four
quantities are required to compute both FH and Dempster’s
conditional beliefs of all propositions, as well as to compute
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Fig. 1. DS-Conditional-All model. Quantities related to Bl(B|A) [or Bl(B‖A)] computation for all B ⊆ A when A = {a0, a1, . . . , a|A|−1} and A =
{α0, α1, . . . , α|A|−1}. Segment 1 , which employs a (2|A| × 2|A|)-sized DS-Matrix data structure, illustrates the computation of #A(B) ∀B ⊆ A; segment 2
illustrates the computation of $A(B) ∀B ⊆ A; and segment 3 illustrates the computation of Bl(B), B ⊆ A.

Dempster’s conditional masses of all propositions (see
Propositions 1–4).

1) REGAP(A): Use this to compute Bl(A) which is #A(∅)
or $A(∅) (#A(∅) can be obtained from the output of
Procedure 1).

2) (REGAP(A)×B) ∀B ⊆ A: Add the BBA of
each column except the BBA of the top ele-
ment to compute #A(B) ∀B ⊆ A. Segment 1©
of Fig. 1 shows this computation (see
Procedure 1).
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Procedure 1 Compute all #A (O(2|!|))

1: procedure ALL#A(Singletons A, Singletons A, DS-Matrix
BBA[ ][ ])

2: for j← 0, power[|A|]− 1 do
3: #A[j]← 0
4: end for
5: for j← 0, power[|A|]− 1 do
6: for i← 1, power[|A|]− 1 do
7: #A[j]← #A[j] + BBA[i][j]
8: end for
9: end for

10: Return #A[ ]
11: end procedure

3) Use REGAP(A) to identify the propositions relevant
for $A(B) ∀B ⊆ A, computation and apply the fast
Möbius transform (FMT) to obtain the $A(·) values
from #A(B) ∀B ⊆ A. Segment 2© of Fig. 1 illustrates
this transformation (see Procedure 2).

4) Use REGAP(A) and apply the FMT to obtain the belief
values Bl(B), B ⊆ A, from the BBA m(B) ∀B ⊆ A.
Segment 3© of Fig. 1 illustrates this transformation
(steps of this computation are similar to Procedure 2).

Fig. 1 depicts these quantities related to the computation of
Bl(B|A) [or Bl(B‖A)] for all B ⊆ A.

Note that segments 2© and 3© of Fig. 1, which are employed
within 3) and 4) above, utilize the FMT in [42], [43], [45],
and [46]. The FMT, which is analogous to the fast Fourier
transform (FFT), allows one to convert between a BBA
and its corresponding belief potential [as in Definition 2
and (1)]. The functional relationship between #(·) and $(·)
(see Proposition 1) and the relationship between a BBA and
its corresponding belief (see Definition 2) are the same, and
hence, this same FMT can be used to convert between #(·)
and $(·).

In the procedures to follow, we use a lookup table called
power to enhance computational efficiency. It contains 2 to
the power of singleton indexes in increasing order and it is
implemented using a dynamic array that replaces runtime com-
putation of 2 to the power values with a simpler array indexing
operation. The Jth entry of the power table, power[J], refers
to 2J .

Time Complexity of Procedure 1: This computes all #A in
O(2|!|) complexity.

Line #1: The procedure inputs are the complement of con-
ditioning proposition A, conditioning proposition A, and the
DS-Matrix BBA[ ][ ].

Lines #2–4: The required number of iterations is (2|A|) and
the complexity of this segment is O(2|A|).

Lines #5–9: The outer loop is executed (2|A|) times.
Lines #6–8: The inner loop is executed (2|A| − 1) times. The
complexity of an access operation is O(1). Thus, the time
complexity of lines #5–9 is (2|A| − 1) (2|A|) = O(2|A|+|A|) =
O(2|!|).

Line #10: The procedure output is #A[ ].

Procedure 2 Compute all $A (O(2|A| × |A|))
1: procedure ALL$A(Singletons A, DS-Vector #A[ ])
2: for j← 0, power[|A|]− 1 do
3: $A[j]← #A[j]
4: end for
5: for J← 0, |A|− 1 do
6: for t← 0, power[|A|− J]− 2 step 2 do
7: for s← 0, power|J|− 1 do
8: $A[(t + 1) ∗ power[J] + s]← $A[(t + 1) ∗

power[J] + s] + $A[t ∗ power[J] + s]
9: end for

10: end for
11: end for
12: Return $A[ ]
13: end procedure

Space Complexity of Procedure 1: The matrix in Fig. 1 (see
segment 1©) is of size 2|A|×2|A|. Hence, the space complexity
associated with the above procedure is O(2|!|).

Time Complexity of Procedure 2: This computes all $A in
O(2|A| × |A|) complexity.

Line #1: The procedure inputs are the conditioning propo-
sition A and the DS-Vector #A[ ].

Lines #2–4: The required number of iterations is (2|A|) and
the complexity of this segment is O(2|A|).

Lines #5–11: The outer loop is executed (|A|) times.
Lines #6–10: The middle loop is executed (2|A|−J−1) times.
Lines #7–9: The inner loop is executed (2J) times. The

complexity of an access operation is O(1). Thus, the time com-
plexity of lines #5–11 is (|A|)(2|A|−J−1) (2J) = O(2|A| × |A|).

Line #12: The procedure output is $A[ ].
Space Complexity of Procedure 2: The #A[ ] and $A[ ] vec-

tors in Fig. 1 are of size 2|A|. Hence, the space complexity
associated with the above procedure is O(2|A|).

Note that in the DS-Conditional-All model, REGAP(A) cap-
tures all propositions that may contribute to the conditional
core FA. REGAP(A) and (REGAP(A)×REGAP(A)), which is
the Cartesian product of REGAP(A) and REGAP(A), capture
all propositions whose masses are annulled (as identified by
Lemma 1). See Fig. 1.

IV. EFFICIENT COMPUTATION OF DST CONDITIONALS

In this section, we discuss efficient computation of
DST conditionals using the DS-Conditional-All computational
model (see Fig. 1), which can be employed to compute both
the FH and Dempster’s conditional beliefs and Dempster’s
conditional masses of all propositions. To obtain the FH con-
ditional masses, one may apply the FMT to the FH conditional
beliefs that have been computed.

A. Algorithm 1: FH Conditional Beliefs of All Propositions

The DS-Conditional-All model provides $A(A ∩ B) and
Bl(A ∩ B) for all B ⊆ A via Procedures 1 and 2. Now, one
may use these in Propositions 1 and 2 to obtain Bl(B|A) as

Bl(B|A) = Bl(A ∩ B)

1−$A(A ∩ B)
. (4)

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on October 08,2020 at 23:47:51 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

POLPITIYA et al.: EFFICIENT COMPUTATION OF CONDITIONALS IN DS BELIEF THEORETIC FRAMEWORK 7

We may compute all conditional belief values by iterating
on the propositions in REGAP(A) and applying the above
equation. The time complexity is O(max{2|A| × |A|, 2|!|}).

B. Algorithm 2: Dempster’s Conditional Beliefs of All
Propositions

As before, we can obtain $A(A ∩ B) and Bl(A ∩ B) for all
B ⊆ A via Procedures 1 and 2. Then, use the expressions in
Propositions 1 and 3 to obtain Bl(B‖A) as

Bl(B‖A) = Bl(A ∩ B) + $A(A ∩ B)− #A({∅})
1− #A({∅}) . (5)

We can compute all conditional belief values by iterating
on the propositions in REGAP(A) and applying the above
equation. The time complexity is O(max{2|A| × |A|, 2|!|}).

C. Algorithm 3: FH (or Dempster’s) Conditional Masses of
All Propositions With the FMT

FH (or Dempster’s) conditional masses of all proposi-
tions can be obtained by applying the FMT to the FH (or
Dempster’s) conditional beliefs that have been computed via
Algorithm 1 (or Algorithm 2) above. The time complexity is
O(max{2|A| × |A|, 2|!|}).

D. Algorithm 4: Dempster’s Conditional Masses of All
Propositions With No Recourse to the FMT

We can obtain #A(A∩B) for all B ⊆ A via Procedure 1 and
then use the expressions in Propositions 1 and 4 to obtain

m(B‖A) = m(A ∩ B) + #A(A ∩ B)

1− #A({∅}) . (6)

All conditional mass values are computed by iterating on the
propositions in REGAP(A) and applying (6). The time com-
plexity of iterating over REGAP(A) is O(2|A|). m(A ∩ B) can
be accessed in O(1). Also, after applying Procedure 1, we
can access #A({∅}) in O(1). Thus, the time complexity of
computing all conditional masses is O(2|!|).

It is noteworthy that the work in [27] and [30] offers
a matrix calculus-based algorithm for exact computation of
Dempster’s conditional masses. It employs a 2|!| × 2|!|-
sized stochastic matrix SA (with each entry “0” or “1”)
referred to as the conditioning specialization matrix and a
2|!|× 1-sized vector m(·) containing the BoE’s focal elements.
Then, m(·‖A) = SA · m(·) yields Dempster’s conditioning
masses without normalization. The time and space complexity
of the specialization matrix multiplication is O(2|!|× 2|!|), a
prohibitive burden even for modest FoD sizes.

V. EXPERIMENTS

We now report the results of our experiments that were
conducted to verify the performance of the DS-Conditional-All
computational model.

Procedure: Note that Procedures 1 and 2 yield all the param-
eters [viz., Bl(A ∩ B), #A({∅}), and $A(A ∩ B)] required for
both FH and Dempster’s conditional belief computations of all
propositions. Once these quantities are computed, computa-
tional times for both conditional belief computations (FH and

Dempster’s) are similar because the final operations require
only a constant time (see Propositions 1–3).

With the DS-Conditional-All model, we use Algorithms 1
and 2 to compute all the conditional beliefs; this applies to both
FH and Dempster’s conditionals. We next use Algorithm 3,
which employs the FMT to obtain the conditional masses for
all the propositions. We also use Algorithm 4 to compute all
Dempster’s conditional masses directly, without FMT.

With the DS-Conditional-One model, which again applies
to both FH and Dempster’s conditionals, we first use a “brute
force” approach to compute all the conditional beliefs one by
one. We next use FMT to obtain the conditional masses for
all the propositions.

The specialization matrix-based method, which applies to
Dempster’s conditional only, yields the conditional masses
of all propositions, but the time taken already far exceeds
that taken by the DS-Conditional-One and DS-Conditional-
All models (even including the FMT). So we did not compute
the conditional beliefs with the specialization matrix-based
method (which would have required FMT).

Average CPU Times: Table I lists the average computa-
tional times taken by the DS-Conditional-All model, direct
use of the DS-Conditional-One model [53], and the special-
ization matrix-based method in [27] and [30]. The results
reported are the average CPU times obtained by executing the
algorithms for 10 000 randomly chosen conditioning (A) and
conditioned (B ⊆ A) propositions from FoD. A random set of
focal elements was generated in the core for each FoD size.

All conditional computations for smaller FoDs were sim-
ulated on a Macintosh desktop computer (iMac) running
Mac OS X 10.14.3 (with 2.9-GHz Intel Core i5 processor
and 8 GB of 1600-MHz DDR3 RAM). Conditional com-
putations for larger FoDs were done on a supercomputer
(https://ccs.miami.edu/pegasus) (underlined in Table I).

The significant speed advantage offered by the proposed
computational model over the specialization matrix-based
approach and DS-Conditional-One model is evident from
Table I. For larger FoDs, the computational burden associated
with the specialization matrix-based approach becomes pro-
hibitive because of its O(2|!| × 2|!|) time and space com-
plexities. For example, an FoD of size 22 would need
2 TB (= 222 × 222/8 bytes) of memory to represent the
specialization matrix, if each matrix entry occupies only
1 bit. This is a prohibitive space requirement for practical
applications. For large FoDs, the computational time require-
ment of the specialization matrix-based approach rapidly
becomes infeasible (see Table I). With increasing FoD size,
the computational time requirements of the DS-Conditional-
All and DS-Conditional-One models are significantly less
compared to what the specialization matrix-based approach
requires.

Bounds on the CPU Times: The time complexities of
the DS-Conditional-All and specialization matrix method are
O(max{2|A|× |A|, 2|!|}) and O(2|!|× 2|!|), respectively (see
Section III). We can bound the CPU times associated with
these two methods as follows.

1) DS-Conditional-All: The number of operations required
for segments 1©, 2©, and 3© in Fig. 1 is 2|A|(2|A| − 1),
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TABLE I
DS-Conditional-All MODEL VERSUS DS-Conditional-One MODEL AND SPECIALIZATION MATRIX-BASED METHOD. AVERAGE COMPUTATIONAL TIMES

(MS) (*** DENOTES COMPUTATIONS NOT COMPLETED WITHIN A FEASIBLE TIME OR SPACE REQUIREMENT)

TABLE II
CPU TIMES (MS) FOR DS-Conditional-All MODEL (UPPER BOUND) VERSUS SPECIALIZATION MATRIX METHOD (LOWER BOUND). COMPUTATIONAL

TIMES ARE CALCULATED ASSUMING 10× 106 COMPUTATIONAL ITERATIONS PER SECOND

|A| · 2|A|−1, and |A| · 2|A|−1, respectively. So, using the
fact that |A| = |!|− |A|, we obtain the total number of
operations as 2|!|−2|A|+A·2|A|−1. The maximum value
of this occurs when |A| = |!|, thus giving the following
upper bound on the number of operations required for
DS-Conditional-All:

OPS(DSConditionalAll) ≤ |!| · 2|!|. (7)

2) Specialization Matrix Method: This method contains
three main steps in the computation. Initializing the spe-
cialization matrix with respect to the conditioning event,
specialization matrix multiplication with the BoE, and
normalization (if normalized BBA values are required).
The specialization matrix multiplication itself requires
2|!| · 2|!|/2 number of operations, yielding the follow-
ing lower bound on the number of operations required
for the specialization matrix method:

OPS(SpecializationMatrix) ≥ 2|!| · 2|!|/2. (8)

A comparison of these bounds appears in Table II.

VI. CONCLUSION

This article provides a scalable, generalized framework
for the efficient and exact computation of DST conditionals.
The proposed DS-Conditional-All model can also serve as
a tool for visualization and further analysis of the condi-
tional computation process. We believe that this computational
framework constitutes an important step forward in harnessing
the strengths of DST methods in practical applications.

By carefully reducing the number of operations being exe-
cuted, the proposed approach takes significantly less time
and space complexity when compared to other approaches
for conditional computation. This reduction in the number
of operations is achieved primarily by the following four
improvements.

1) The matrix utilized in the DS-Conditional-All model is
generally much smaller than the matrix used in the spe-
cialization matrix method, viz., the DS-Matrix is of size
(2|A| × 2|A|) (see segment 1© of Fig. 1), whereas the
specialization matrix is of size (2|!| × 2|!|).

2) Matrix multiplications are avoided. Instead, only addi-
tions, which are computationally less expensive than
multiplications, are employed.

3) Algorithms avoid repetitive computations.
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Fig. 2. Best use of DS-Conditional-One and DS-Conditional-All computa-
tional models. For example, to compute all the Dempster’s conditional masses,
use the DS-Conditional-All model; to compute all the FH conditional masses,
use the DS-Conditional-All model to first compute all the FH conditional
beliefs and then apply the FMT to obtain the conditional masses.

4) The access operation of a focal element takes constant
time.

For both FH and Dempster’s conditionals, this framework
provides algorithms to compute all conditional beliefs in
O(max{2|A|×|A|, 2|!|}). It also provides an algorithm to com-
pute all Dempster’s conditional masses in O(2|!|). In contrast,
the specialization matrix approach [30] for the Dempster’s
conditional requires a time complexity of O(2|!| × 2|!|). As
an example, for an FoD of size 30 (∼1 billion focal elements),
the proposed framework can compute all conditional masses
or beliefs within 1 min while the specialization matrix will
take more than 1800 CPU years. The space complexity of the
proposed algorithms is O(2|!|), again a significant improve-
ment over the prohibitive O(2|!| × 2|!|) space complexity of
the specialization matrix approach.

Another advantage of our model is that it can be utilized for
both the FH and Dempster’s conditional belief computations.
Fig. 2 summarizes the best use of DS-Conditional-One and
DS-Conditional-All computational models.

An outcome of this research is a completely new computa-
tional library (in C++) that we refer to as DS-COCA [57].
It includes the implementation of required data structures
and algorithms along with simulation tools for both the
DS-Conditional-One model (developed in [53] for comput-
ing the conditional belief of an arbitrary proposition) and
DS-Conditional-All model (developed in this article for com-
puting the conditional beliefs of all propositions). We hope
that DS-COCA will influence the development and practical
implementation of real-time evidence fusion and uncertainty
reasoning algorithms based on the DST framework.

Our current research work is focused on conditional com-
putations on potentially dynamic FoDs (where the singletons
may have to be removed or new singletons may have to
be appended as operations are being carried out). From a

computational perspective, the ability to work with a dynamic
FoD is highly important for enhanced resource utilization. It
also appears that the underlying matrix structure may allow
further improvement of the algorithms that we have developed
via parallel computing optimizations.
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