
A Framework for Efficient Computations
of Belief Theoretic Operations

Lalintha G. Polpitiya, Kamal Premaratne, Manohar N. Murthi and Dilip Sarkar

19th International Conference on Information Fusion,
Heidelberg, Germany, 2016

Acknowledgement: This work is based on research supported by the U.S. Office of Naval Research (ONR)
via grant #N00014-10-1- 0140, and the U.S. National Science Foundation (NSF) via grant #1343430.

7 July 2016

1

Outline

1 Motivation

2 Computational Framework

3 Arbitrary Belief Computations

4 Experiments

5 Future research

2

Motivation
Wide applicability of Dempster-Shafer (DS) theory

The Dempster-Shafer (DS) theory is a powerful general framework for
reasoning under uncertainty.

It has been identified as a framework for handling a wide variety of data
imperfections. [Smets, 1999, Yager et al., 1994]

As a consequence, DS theory has been transformed into an important
computational tool for evidential reasoning in numerous application scenarios
(e.g., expert systems). [Yager and Liu, 2008]

3

Motivation
Heavy computational burden it entails

DS theory offers greater expressiveness and flexibility in evidential reasoning.

However, these advantages come at a cost: DS theoretic (DST) operations
involve an additional cost in terms of higher computational complexity.

A major challenge for harnessing the advantages of DS theory in practice is
to overcome this computational complexity, especially when working with
large frames of discernment.

4

Previous work
for computations of belief theoretic operations

The use of bit-strings[Thoma, 1989, Xu and Kennes, 1994] or
integers[Liu, 2014] to represent focal elements.

Approximations methods - provide lower bounds by removing some of the
focal elements with or without redistributing the corresponding belief
potentials [Voorbraak, 1989, Dubois and Prade, 1990, Tessem, 1993,
Bauer, 1997, Harmanec, 1999].

More sophisticated methods produce lower and upper bounds
[Denœux, 2001, Haenni and Lehmann, 2002].

Fast Möbius transform, which is analogous to the fast Fourier transform, has
been developed toward efficient DST computations
[Thoma, 1989, Kennes and Smets, 1990, Thoma, 1991].

5

What is still lacking
on computations of DST operations

There is no widely accepted computationally feasible generalized framework
to represent DST models and carry out DST operations.

A thoughtful discussion about data structures and algorithms for efficient
DST computations is still lacking.

Current implementations, lack the ability to handle computations on larger
frames.

6

Contributions
to fill the void between what DS theory can offer and its practical implementation

We introduce a novel generalized computational framework where we develop
three different representations — DS-Vector, DS-Matrix, and DS-Tree —

Relevant data structures and algorithms for DST operations.

Act as simple tools for visualization of DST models and the complex nature
of the computations involved.

A strategy, which we refer to as REGAP (REcursive Generation of and Access
to Propositions).

We introduce an implicit index calculation mechanism to represent a focal
element.

Open source library implementation for DST operations.

7

Basic notions of Belief theory

Symbol Meaning

Θ Frame of discernment (FoD), i.e., the set of all possible
mutually exclusive and exhaustive propositions.

θi Singletons, i.e., the lowest level of discernible information,
i.e., Θ = {θ0, . . . , θn−1}, here n = |Θ|. For computational
ease, we start the indexing from 0.

A Complement of the proposition A ⊆ Θ, i.e., those singletons
that are not in A.

m(·) Basic belief assignment (BBA) or mass assignment m :
2Θ 7→ [0, 1] where

∑
A⊆Θ m(A) = 1 and m(∅) = 0.

Focal element Singleton or composite (i.e., non-singleton) proposition that
receives a non-zero mass.

F Core, the set of focal elements.

E Body of evidence (BoE) represented via the triplet
{Θ, F, m}.

Subset propositions of A Subsets of A and A itself, here m = |A|

8

REcursive Generation of and Access to Propositions
REGAP: Starting with ∅ element

Figure: REGAP: REcursive Generation of and Access to Propositions, Start with ∅

Consider the FoD Θ = {θ0, θ1, . . . , θn−1}.
Suppose we desire to determine the belief potential associated with
A = (θk1 , θk2 , . . . , θk`) ⊆ Θ.

The REGAP property allows us to recursively generate the propositions that
are relevant for this computation: Start with ∅.

9

REcursive Generation of and Access to Propositions
REGAP: Inserting singleton θk1

Figure: REGAP: REcursive Generation of and Access to Propositions, inserting θk1

First insert the singleton θk1 ∈ A. Only one proposition is associated with this
singleton, viz., ∅ ∪ θk1 = θk1 itself.

10

REcursive Generation of and Access to Propositions
REGAP: Inserting singleton θk2

Figure: REGAP: REcursive Generation of and Access to Propositions, inserting θk2

Next insert another singleton θk2 ∈ A. The new propositions that are
associated with this singleton are ∅ ∪ θk2 = θk2 and θk1 ∪ θk2 = (θk1 , θk2).

11

REcursive Generation of and Access to Propositions
REGAP: Inserting singleton θk3

Figure: REGAP: REcursive Generation of and Access to Propositions, inserting θk3

Inserting another singleton θk3 ∈ A brings the new propositions ∅ ∪ θk3 = θk3 ,
θk1 ∪ θk3 = (θk1 , θk3), θk2 ∪ θk3 = (θk2 , θk3), and (θk1 , θk2)∪ θk3 = (θk1 , θk2 , θk3).

In essence, when a new singleton is added, new propositions associated with
it can be recursively generated by adding the new singleton to each existing
proposition.

12

REcursive Generation of and Access to Propositions
REGAP: Generalized representation

Figure: REGAP: REcursive Generation of and Access to Propositions

We refer to this recursive scheme as REGAP, which stands for REcursive
Generation of and Access to Propositions.

All propositions of interest within the FoD Θ can be generated when A = Θ.

These recursively generated propositions can be formulated as a vector, a
matrix or a tree, and utilized to represent a dynamic BoE.

13

DS-Vector: Vector representation of a dynamic BoE

Figure: DS-Vector: Vector representation of a dynamic BoE.

In figure, rectangles represent the recursive steps of dynamic BoE generation.

Propositions are represented by implicit contiguous indexes. So, no memory
allocation is needed to store a proposition.

Memory allocation is needed only to store the required belief potentials (or,
more generally, mass, belief, plausibility, or commonality values)

14

DS-Matrix: Matrix representation of a dynamic BoE

Figure: DS-Matrix: Matrix representation of a dynamic BoE.

15

Access a belief potential in a DS-Matrix

Input parameters are passed as Ae and Ao ; Ae includes even numbered
singletons and Ao includes odd singletons of the proposition of interest.

Power [i] is a lookup table, which includes 2 to the power of indexes.

Algorithm to access a belief potential in a DS-Matrix

1: procedure AccessPotential(EvenSingletons Ae , OddSingletons Ao)
2: row ← 0
3: col ← 0
4: for each θi in Ao do
5: row = row + power [i]
6: end for
7: for each θi in Ae do
8: col = col + power [i]
9: end for

10: Return potential [row][col]
11: end procedure

Analysis and other access algorithms are in the paper.

16

DS-Tree: Perfectly balanced binary tree representation of a
dynamic BoE

Figure: DS-Tree: Perfectly balanced binary tree representation of a dynamic BoE.

17

Arbitrary belief computations
from a minimum number of operations

Definition(Belief)

Given a BoE E = {Θ,F,m(·)}, the belief assigned to A ⊆ Θ is Bl : 2Θ 7→ [0, 1]
where

Bl(A) =
∑
B⊆A

m(B).

Shafer has stated, “It remains to be seen how useful the fast Möbius
transform will be in practice. It is clear, however, that it is not enough to
make arbitrary belief function computations feasible.” [Shafer, 1990, p.348].

Exactly for this purpose, employing REGAP, we propose a new approach to
identify propositions relevant to a given belief computation.

This technique can be used to calculate arbitrary belief, plausibility, and
commonality function values from a minimum number of operations.

18

Arbitrary belief computations
Employing REGAP to generate relevant propositions

Figure: REGAP: REcursive Generation of and Access to Propositions

The REGAP strategy generates required propositions relevant to the
computation of Bl(A), where A = (θk1 , θk2 , . . . , θk`) ⊆ Θ.

Belief computation is performed by accessing only the subset propositions.

The maximum number of subset propositions that one would have to access
is about 2m, where m = |A|.

19

Computing belief in a DS-Matrix

Algorithms to compute belief in a DS-Matrix
1: procedure ComputeBelief(SingletonCoordinates AP , Normalize Nlz)
2: belief ← 0
3: count ← 0
4: for each pair p in AP do
5: index [count].row ← p.row
6: index [count].col ← p.col
7: temp ← count
8: count ← count + 1
9: for j ← 0, temp − 1 do

10: index [count].row ← index [j].row + p.row
11: index [count].col ← index [j].col + p.col
12: count ← count + 1
13: end for
14: end for
15: for i ← 0, power [|AP |]− 2 do
16: belief ← belief
17: +potential [index [i].row][index [i].col]
18: end for
19: Return belief /Nlz
20: end procedure

Analysis and other belief computation algorithms are in the paper.

20

Plausibility computation

Definition(Plausibility)

Given a BoE E = {Θ,F,m(·)}, the plausibility assigned to A ⊆ Θ is
Pl : 2Θ 7→ [0, 1] where

Pl(A) = 1− Bl(A).

It is easy to see that

Pl(A) =
∑
B⊆Θ

B∩A 6=∅

m(B). (1)

Plausibility Pl(A) can be computed by applying belief computation algorithm
to A and using the equation, Pl(A) = 1− Bl(A).

21

Commonality value

Definition(Commonality)

Given a BoE E = {Θ,F,m(·)}, the commonality function of A ⊆ Θ is
Q : 2Θ 7→ [0, 1] where

Q(A) =
∑

A⊆B⊆Θ

m(B).

Propositions relevant to commonality Q(A) calculation can be generated by
applying REGAP to A and adding the proposition A to all the generated
propositions.

In this way, computations can also be performed with minor modifications to
belief computation algorithms.

22

Experiments

We have developed a novel belief computation library using the C++
programming language.

This includes the implementation of data structures and algorithms for
carrying out DST operations in the three representations DS-Vector,
DS-Matrix, and DS-Tree.

Experiments were simulated on a Macintosh desktop computer (iMac)
running Mac OS X 10.11.3, with 2.9GHz Intel Core i5 processor and 8GB of
1600MHz DDR3 RAM

23

Experiments
CPU time of accessing a proposition (µs)

Average computational times for accessing arbitrary propositions are listed in table
for different implementations.

Results were obtained by executing the algorithms for 100000 randomly chosen
propositions from the FoD and noting the average CPU time.

A random set of focal elements were generated in the core for each FoD size.

FoD Size Max. |F| DS-Vector DS-Matrix List Struct.
2 3 0.379 0.393 0.465
4 15 0.400 0.412 0.510
6 63 0.410 0.454 0.739
8 255 0.443 0.449 1.541

10 1023 0.433 0.496 4.632
12 4095 0.465 0.493 16.906
14 16383 0.465 0.527 67.242
16 65535 0.495 0.517 268.443
18 262143 0.529 0.560 1124.0600
20 1048575 0.575 0.629 4609.3700

Table: CPU Time of Accessing a Proposition (µs)

24

Experiments
CPU time of belief Computation (µs)

Average computational times of randomly chosen belief computations are listed in
the table for different implementations.

Results were obtained by executing the algorithms for 100000 randomly chosen
propositions from the FoD and noting the average CPU time.

A random set of focal elements were generated in the core for each FoD size.

FoD Size Max. |F| DS-Vector DS-Matrix List Struct.
2 3 0.373 0.362 0.450
4 15 0.378 0.376 0.531
6 63 0.415 0.450 0.833
8 255 0.453 0.508 1.779

10 1023 0.525 0.663 5.529
12 4095 0.655 0.923 20.757
14 16383 0.884 1.314 81.196
16 65535 1.340 2.159 325.930
18 262143 2.107 3.510 1373.110
20 1048575 3.963 6.210 5448.170

Table: CPU Time of Belief Computation (µs)

25

Concluding Remarks

This research work provides a novel generalized computational framework
along with data structures and efficient algorithms for DST computations.

— DS-Vector, DS-Matrix, and DS-Tree — also act as simple tools for
visualization of DST models and operations.

The proposed REGAP strategy allows one to identify the exact subsets
relevant to a given belief computations, and also to develop dynamic BoE
representations.

Introduce implicit index calculation mechanism is useful to improve the
memory usage efficiency.

As an outcome of this research work, a belief computation library in C++
which includes all the important operations to work with belief computations
is made available. Now this library is available as a open source repository in
GitHub. The url is,
https://github.com/ProFuSELab/Belief-Computation-Library

26

https://github.com/ProFuSELab/Belief- Computation- Library

Future research

How to handle dynamic FoDs. Removing one singleton from a FoD removes
half the propositions that need to be considered. Thus, from a computational
perspective, the ability to add, remove, and change the FoD is highly
important.

Efficeint algorithms for DST conditional [Fagin and Halpern, 1991], the
conditional update equation [Wickramarathne et al., 2011], and other
operations associated with DST algorithms.

27

References I

Bauer, M. (1997).

Approximation algorithms and decision making in the dempster-shafer theory of evidencean empirical
study.
Int. J. Approx. Reasoning, 17(2):217–237.

Denœux, T. (2001).

Inner and outer approximation of belief structures using a hierarchical clustering approach.
Int. J. Uncertainty, Fuzziness Knowledge-Based Syst., 9(4):437–460.

Dubois, D. and Prade, H. (1990).

Consonant approximations of belief functions.
Int. J. Approx. Reasoning, 4(5):419–449.

Fagin, R. and Halpern, J. Y. (1991).

A new approach to updating beliefs.
In Bonissone, P. P., Henrion, M., Kanal, L. N., and Lemmer, J. F., editors, Proc. Conf. 6th Uncertainty
in Artificial Intelligence (UAI), pages 347–374. Elsevier Science, New York.

Haenni, R. and Lehmann, N. (2002).

Resource bounded and anytime approximation of belief function computations.
Int. J. Approx. Reasoning, 31(1):103–154.

Harmanec, D. (1999).

Faithful approximations of belief functions.
In Proc. Conf. 15th Uncertainty in Artificial Intelligence (UAI), pages 271–278, San Francisco, CA.
Morgan Kaufmann.

28

References II

Kennes, R. and Smets, P. (1990).

Fast algorithms for dempster-shafer theory.
In Bouchon-Meunier, B., Yager, R. R., and Zadeh, L. A., editors, Uncertainty in Knowledge Bases, pages
14–23. Springer-Verlag, Berlin.

Liu, L. (2014).

A relational representation of belief functions.
In Cuzzolin, F., editor, Belief Functions: Theory and Applications, pages 161–170. Springer, Switzerland.

Shafer, G. (1990).

Perspectives on the theory and practice of belief functions.
Int. J. Approx. Reasoning, 4(5-6):323–362.

Smets, P. (1999).

Practical uses of belief functions.
In Laskey, K. B. and Prade, H., editors, Proc. Conf. 15th Uncertainty in Artificial Intelligence (UAI),
pages 612–621, San Francisco, CA. Morgan Kaufmann.

Tessem, B. (1993).

Approximations for efficient computation in the theory of evidence.
Artificial Intell., 61(2):315–329.

Thoma, H. M. (1989).

Factorization of Belief Functions.
PhD thesis, Harvard University, Cambridge, MA.

29

References III

Thoma, H. M. (1991).

Belief function computations.
In Goodman, I. R., Gupta, M. M., Nguyen, H. T., and Rogers, G. S., editors, Conditional Logic in
Expert Systems, pages 269–308. North-Holland, Amsterdam.

Voorbraak, F. (1989).

A computationally efficient approximation of dempster-shafer theory.
Int. J. Man-Machine Stud., 30(5):525–536.

Wickramarathne, T. L., Premaratne, K., Murthi, M. N., Scheutz, M., Kuebler, S., and Pravia, M.

(2011).
Belief theoretic methods for soft and hard data fusion.
In Proc. Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), pages 2388–2391, Prague,
Czech Republic.

Xu, H. and Kennes, R. (1994).

Steps toward efficient implementation on dempster-shafer theory.
In Yager, R. R., Kacprzyk, J., and Fedrizzi, M., editors, Advances in the Dempster-Shafer Theory of
Evidence, pages 153–174. Wiley, New York.

Yager, R. R., Kacprzyk, J., and Fedrizzi, M., editors (1994).

Advances in the Dempster-Shafer Theory of Evidence.
Wiley, New York.

Yager, R. R. and Liu, L., editors (2008).

Classic Works of the Dempster-Shafer Theory of Belief Functions.
Springer-Verlag, Heidelberg, Germany.

30

Questions ?

Thank you!

31

Access a belief potential in a DS-Vector

32

Access a belief potential in a DS-Matrix

33

Access a belief potential in a DS-Tree

34

Computing Belief in a DS-Vector

35

Computing Belief in a DS-Matrix

36

Computing Belief in a DS-Tree

37

Computing Belief in a DS-Tree

38

	Motivation
	Computational Framework
	Arbitrary Belief Computations
	Experiments
	Future research

